基于标准库的STM32与OpenMV相互发送与接收详解

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 目录

    文章目录

    前言

    一、硬件连接

    二、数据包传输

    三、openmv发送stm32端接收

    1.openmv端(发送函数)

    2.stm32端(接收函数)

    串口中断服务函数:

    数据读取函数:

    数据处理函数:

     main函数oled屏幕显示调用:

    3.实物调试

    四、stm32发送openmv端接收

    1.stm32端(发送函数) 

    2.openmv端(接收函数)

    3.openmv主函数调用

    4.openmv调试展示

    五、完整代码1(openmv发送stm32端接收)

    1.openmv发送

    2.stm32端接收

     六、完整代码2(stm32端发送openmv接收)

    1.stm32端

    2.openmv端

    总结


    总结


  • 前言

            前段时间参加电赛校赛的时候题目是做21年f题智能送药小车,在openmv与stm32通信中遇到了些困难,通过看一些大佬们的文章与例程,我总结出了一套实用性不错的通信协议代码,一方面是对自己的知识进行总结,另一方面也可以将其提供给有需要的同学,如有理解错误,欢迎大佬们的指正。


    提示:以下是本篇文章正文内容,下面案例可供参考

    一、硬件连接

    我所用到的材料如下: 四针IIC OLED,OpenMV4 7h(OV7725),STM32F103C8T6最小系统板,数据线N条,LED灯模块(OpenMV的数据线只能用官方自带的),杜邦线若干。

    下图以Arduino为例把主控TXD与openmv的P5连接,RXD与openmv的P4连接,在STM32端:USART_TX—PA9 —–USART_RX—PA10。(用的是32的USART1)

    四针IIC OLED连接:

    SDA–PB9,SCL–PB8;GND,VCC(3.3V)正常接入就好;

     

    二、数据包传输

    这里采用的数据包传输方式是固定包长,含包头包尾方式(即为第一种),帧头帧尾不固定,可自定义,图示帧头帧尾分别为0xfe与0xef;代码呈现的分别是0xb3,0xb5,下图为图解原理:

    三、openmv发送stm32端接收

    1.openmv端(发送函数)

    这里是根据当时做送药小车的模板匹配所用的主要发送程序,完整程序会在文末呈现。

    代码如下(示例):

    
    #最初加载匹配
    def FirstFindTemplate(template):
        R = img.find_template(template, 0.8, step=1, roi=(40, 0, 70, 40), search=SEARCH_EX)   #只检测中间的
        return R
    
    def FirstFindedNum(R, Finded_Num):     #第一个参数是模板匹配的对象,第二个是它所代表的数字
       global Find_Task
       global find_flag
       img.draw_rectangle(R, color=(225, 0, 0))
    
       LoR = 0
       find_flag = 1
       Num = Finded_Num
       FH = bytearray([0xb3,0xb3,Num, LoR,Find_Task,0x5b])
       uart.write(FH)
       print("目标病房号:", Num)
    
    
    
    
    

     这里的FirstFindTemplate(template)函数是用于识别,识别成功后返回R值,主函数在调用FirstFindedNum(R, Finded_Num)时会将R值传输进去,识别到之后进行框选,然后bytearray([, , ,])组合uart.write()将打包好的参数进行发送。

    2.stm32端(接收函数)

    代码如下(示例):这里先省略初始化以及变量定义的程序,文末补全

    串口中断服务函数:

    void USART1_IRQHandler(void)                	//串口1中断服务程序
    	{
    	u8 com_data;
    #if SYSTEM_SUPPORT_OS 		//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
    	OSIntEnter();    
    #endif
    	if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾)
    		{
    			USART_ClearFlag(USART1,USART_FLAG_RXNE);
          com_data = USART1->DR;
    			Openmv_Receive_Data(com_data);     //openmv数据处理函数
    			Openmv_Data();		                 //openmv数据处理函数		
     		
         } 
    #if SYSTEM_SUPPORT_OS 	//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
    	OSIntExit();  											 
    #endif
    } 
    

     常规串口中断程序,串口接收到数据后查询标志位,查询完成后清除并开始将数据读取处理。

    数据读取函数:

    void Openmv_Receive_Data(int16_t data)//接收Openmv传过来的数据
    {
    	static u8 state = 0;
    	if(state==0&&data==0xb3)//第一个帧头
    	{
    		state=1;
    		openmv[0]=data;
    	}
    	else if(state==1&&data==0xb3)//第二个帧头
    	{
    		state=2;
    		openmv[1]=data;
    	}
    	else if(state==2)//第一个有效数据
    	{
    		state=3;
    		openmv[2]=data;
    	}
    	else if(state==3)//第二个有效数据
    	{
    		state = 4;
    		openmv[3]=data;
    	}
      else if(state==4)//第三个有效数据
    	{
    		state = 5;
    		openmv[4]=data;
    	} 
    	else if(state==5)		//检测是否接受到结束标志,检测接收帧尾
    	{
            if(data == 0x5B)
            {
                state = 0;
                openmv[5]=data;
                Openmv_Data();
            }
            else if(data != 0x5B)
            {
                state = 0;
                for(i=0;i<6;i++)
                {
                    openmv[i]=0x00;
                }           
            }
    	}    
    	else
    		{
    			state = 0;
                for(i=0;i<6;i++)
                {
                    openmv[i]=0x00;
                }
    		}
    }
    

     先解析帧头(我这里用了两个帧头,一个也可以,但是与openmv那边一定要相同),再解析有效数据,有效数据接受完传递到openmv[i]数据缓存区后调用Openmv_Data()对数据进行处理,最后解析帧尾。

    数据处理函数:

    void Openmv_Data(void)//处理Openmv接收的数据
    {
        TargerNum=openmv[2];
        LoR=openmv[3];
    	Find_Task =openmv[4];
    }
    

     这里被调用是为了将openmv端的数据传递给变量进行储存,方便在main函数对变量进行打印。

     main函数oled屏幕显示调用:

    extern int16_t TargerNum;          
    extern int16_t Find_Task;          
    extern int16_t LoR;
    
    
    int main(void)
    {
    
    	Usart1_Init(115200);	
    	OLED_Init();
    	OLED_ShowString(1,1,"TargerNum:");
    	OLED_ShowString(2,1,"LoR:");
    	OLED_ShowString(3,1,"Find_Task: ");
    
    
    	while (1)
    	{
    		OLED_ShowNum(1,11,TargerNum,2);
    		OLED_ShowNum(2,5,LoR,2);
    		OLED_ShowNum(3,11,Find_Task,2);
            
        }
    }
    

    3.实物调试

    程序实现效果,当openmv识别到数字后,会通过调用串口发送函数将数据包发送到stm32主控,如图示:

     此时已识别数字1并框选

    oled这边也接收到了数字TargetNum为1,Find_Task为1,LoR暂时未用不需要理会。

    注:数据是以16进制发送过来,但是这里oled是以10进制的形式打印,因为只是1-8数字,所以不会太大影响。

     

    四、stm32发送openmv端接收

    1.stm32端(发送函数) 

    这里数据位逐位发送,与openmv接收端解析函数相匹配。

    代码如下(示例):

    void Usart1_Sendata(u8 * str)
    {	
    	u8 i = 0;
    	USART_SendData(USART1,0x0d);
    	while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
    	
    	for(i = 0;i < 2;i++)
    	{
    		USART_SendData(USART1,str[i]);
    		while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
    	}
    
    	USART_SendData(USART1,0x5b);
    	while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
    }
    
    
    int main(void)
    {
    	NVIC_Config();
    	Usart1_Init(115200);	
    	Find_Task=1;
    	TargerNum=3;
    	u8 send_buff[2] = {TargerNum,Find_Task};
    
    	while (1)
    	{
    		Usart1_Sendata(send_buff);      
        }
    }
    
    
    

     首先解析第一位数据是否为帧头,同时判断发送标志位是否已经检测到,完成后进行有效数据位发送,这里用for循环,使用库函数USART_SendData(USART1,str[i]),将数据发送出去,同时检测标志位,完成后发送帧尾。

    而主函数部分是数组内数据进行反复发送。

    2.openmv端(接收函数)

    这里对stm32那边的数据包进行解析实际上同上方的原理大同小异,这里的数据长度可以自行更改,但是需要发送端和接收端的接收和发送函数相匹配,包括数据缓存区长度也要符合。

    代码如下(示例):

    ########串口接收数据函数处理#########
    def Receive_Prepare():      #data
        global state
        global x
        global tx_flag
        global data
        global Find_Task
        global Target_Num
        if state==0:
            data[0]=uart.readchar()
            if data[0] == 0x0d:#帧头
                state = 1
            else:
                state = 0
                rx_buff.clear()
        elif state==1:
            data[1]=uart.readchar()
            #rx_buff.append(data)
            Target_Num=data[x+1]
            state = 2
        elif state==2:
            data[2]=uart.readchar()
            #rx_buff.append(data)
            Find_Task=data[x+2]
            state = 3
        elif state == 3:
            data[4]=uart.readchar()
            if data[4] == 0x5b:
                tx_flag = int(data[0])
                state = 4
        elif state == 4:
            state=0
    
        else:
            state = 0
            rx_buff.clear()
    
    
    
    

    3.openmv主函数调用

    while (True):
        clock.tick()
        img = sensor.snapshot()# 镜头初始化
            if(uart.any()>0):
               Receive_Prepare()
        print(clock.fps(),Find_Task, Target_Num)

    这里的if(uart.any()>0):是检测是否有数据传输进来,有的话就执行。

    调用接收函数Receive_Prepare(),把Find_Task, Target_Num在串行终端中打印出来。

    4.openmv调试展示

    这里我们用ide自带的串行终端进行观察调试结果

    可以看到,此时的openmv端接收到数字Find_Task为1,TargetNum为3,LoR暂时未用不需要理会。

    注:这里接收/发送有点小问题,如果不断的接收打印,数据会变成13,1,通信时请注意;可能通信协议有点小毛病,希望大佬们可以指正。

     

    五、完整代码1(openmv发送stm32端接收)

    (如果上面看的一头雾水可以试试看完全部程序,也方便梳理)

    1.openmv发送

    import time, image,sensor,math,pyb,ustruct
    from image import SEARCH_EX, SEARCH_DS
    from pyb import Pin, Timer,LED
    
    #从imgae模块引入SEARCH_EX和SEARCH_DS。使用from import仅仅引入SEARCH_EX,
    #SEARCH_DS两个需要的部分,而不把image模块全部引入。
    
    
    sensor.reset()
    
    # Set sensor settings
    sensor.set_contrast(1)
    sensor.set_gainceiling(16)
    # Max resolution for template matching with SEARCH_EX is QQVGA
    sensor.set_framesize(sensor.QQVGA)
    # You can set windowing to reduce the search image.
    
    sensor.set_pixformat(sensor.GRAYSCALE)
    
    sensor.set_windowing(0, 40, 160, 40)  #观察窗口  后面ROI设置也会以这个为新的基准
    
    rx_buff=[]
    state = 0
    tx_flag = 0
    
    # Load template.
    # Template should be a small (eg. 32x32 pixels) grayscale image.
    #加载模板图片
    
    template01 = image.Image("/1.pgm")
    template02 = image.Image("/2.pgm")
    template03 = image.Image("/3.pgm")
    template04 = image.Image("/4.pgm")
    template05 = image.Image("/5.pgm")
    template06 = image.Image("/6.pgm")
    template07 = image.Image("/7.pgm")
    template08 = image.Image("/8.pgm")
    
    
    
    uart = pyb.UART(3, 115200, timeout_char = 1000)     #定义串口1变量
    blue_led = LED(2)
    
    Find_Task =1       #1
    Target_Num =0
    
    
    #####  FindTask == 1 时使用
    #最初加载匹配
    def FirstFindTemplate(template):
        R = img.find_template(template, 0.8, step=1, roi=(40, 0, 70, 40), search=SEARCH_EX)   #只检测中间的
        return R
    
    def FirstFindedNum(R, Finded_Num):     #第一个参数是模板匹配的对象,第二个是它所代表的数字
       global Find_Task
       global find_flag
       img.draw_rectangle(R, color=(225, 0, 0))
    
       #本来中值是80的,但返回值是框边缘,所以减去15就好  小于65是在左边,大于65是在右边
       LoR = 0
       find_flag = 1
       Num = Finded_Num
       FH = bytearray([0xb3,0xb3,Num, LoR,Find_Task,0x5b])
       uart.write(FH)
       print("目标病房号:", Num)
    
    
    
    
    clock = time.clock()
    # Run template matching
    while (True):
        clock.tick()
        img = sensor.snapshot()# 镜头初始化
    
        # find_template(template, threshold, [roi, step, search])
        # ROI: The region of interest tuple (x, y, w, h).
        # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
        # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
        #
        # Note1: ROI has to be smaller than the image and bigger than the template.
        # Note2: In diamond search, step and ROI are both ignored.
    
        if Find_Task == 1:
    
           #进行模板匹配
            r01 = FirstFindTemplate(template01)
            r02 = FirstFindTemplate(template02)
            r03 = FirstFindTemplate(template03)
            r04 = FirstFindTemplate(template04)
            r05 = FirstFindTemplate(template05)
            r06 = FirstFindTemplate(template06)
            r07 = FirstFindTemplate(template07)
            r08 = FirstFindTemplate(template08)
    
            #判断哪个模板匹配成功,并将成功匹配的相应数据发送给主控
            if r01:
                 FirstFindedNum(r01, 1)
            elif r02:
                 FirstFindedNum(r02,2)
            elif r03:
                 FirstFindedNum(r03,3)
            elif r04:
                 FirstFindedNum(r04,4)
            elif r05:
                 FirstFindedNum(r05,5)
            elif r06:
                 FirstFindedNum(r06,6)
            elif r07:
                 FirstFindedNum(r07,7)
            elif r08:
                 FirstFindedNum(r08,8)
            else:
                 FH = bytearray([0x2C,0x12,0x00, 0x00, 0x00, 0x00,0x5B])
                 uart.write(FH)
    
    
        else: time.sleep_ms(100)
    
        print(clock.fps(),Find_Task, Target_Num)
    
    
    

    多出来的数据位不需要那么多的话可以选择对代码进行删减,或者直接当成0x00发送,不会有太大影响。

    2.stm32端接收

    usart1.c

    #include "usart1.h"
    
    //char TargerNum='0';
    int openmv[6];//stm32接收数据数组
    int16_t TargerNum;          
    int16_t Find_Task;          
    int16_t LoR;
    int i;
    /**
     * 函数名:Usart1_Init
     * 描述:串口1初始化
     * 输入:Bound-波特率
     * 输出:无
     */
    
    
    void Usart1_Init(uint32_t Bound)
    {
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
    	GPIO_InitTypeDef GPIO_InitStructure;
    	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
    	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    	GPIO_Init(GPIOA,&GPIO_InitStructure);
    	
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
    	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    	GPIO_Init(GPIOA,&GPIO_InitStructure);
    
    	
    	USART_InitTypeDef USART_InitStructure;
    	USART_InitStructure.USART_BaudRate = Bound;
    	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    	USART_InitStructure.USART_StopBits = USART_StopBits_1;
    	USART_InitStructure.USART_Parity = USART_Parity_No;
    	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
    	USART_Init(USART1,&USART_InitStructure);
    	
    	NVIC_InitTypeDef NVIC_InitStructure;
    	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
    	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    	NVIC_Init(&NVIC_InitStructure);
    	
    	USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
    	USART_Cmd(USART1,ENABLE);
    }
    
    void Openmv_Data(void)//处理Openmv接收的数据
    {
        TargerNum=openmv[2];
        LoR=openmv[3];
    	Find_Task =openmv[4];
    }
     
    void Openmv_Receive_Data(int16_t data)//接收Openmv传过来的数据
    {
    	static u8 state = 0;
    	if(state==0&&data==0xb3)//第一个帧头
    	{
    		state=1;
    		openmv[0]=data;
    	}
    	else if(state==1&&data==0xb3)//第二个帧头
    	{
    		state=2;
    		openmv[1]=data;
    	}
    	else if(state==2)//第一个有效数据
    	{
    		state=3;
    		openmv[2]=data;
    	}
    	else if(state==3)//第二个有效数据
    	{
    		state = 4;
    		openmv[3]=data;
    	}
      else if(state==4)//第三个有效数据
    	{
    		state = 5;
    		openmv[4]=data;
    	} 
    	else if(state==5)		//检测是否接受到结束标志,检测接收帧尾
    	{
            if(data == 0x5B)
            {
                state = 0;
                openmv[5]=data;
                Openmv_Data();
            }
            else if(data != 0x5B)
            {
                state = 0;
                for(i=0;i<6;i++)
                {
                    openmv[i]=0x00;
                }           
            }
    	}    
    	else
    		{
    			state = 0;
                for(i=0;i<6;i++)
                {
                    openmv[i]=0x00;
                }
    		}
    }
    
    
    void USART_SendByte(USART_TypeDef* USARTx, char  str)
    {
     
    		USART_SendData(USARTx, str);//发送单个字符
     
    		while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);//判断是否发送完成
     
    	
     
    }
    
    
    
    void USART1_IRQHandler(void)                	//串口1中断服务程序
    	{
    	u8 com_data;
    #if SYSTEM_SUPPORT_OS 		//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
    	OSIntEnter();    
    #endif
    	if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾)
    		{
    			USART_ClearFlag(USART1,USART_FLAG_RXNE);
          com_data = USART1->DR;
    			Openmv_Receive_Data(com_data);     //openmv数据处理函数
    			Openmv_Data();		                 //openmv数据处理函数		
     		
         } 
    #if SYSTEM_SUPPORT_OS 	//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
    	OSIntExit();  											 
    #endif
    } 
    
    

     usart1.h

    #ifndef __USART1_H
    #define __USART1_H
    #include "stm32f10x.h"                  // Device header
    #include "sys.h"
    
    
    
    void Usart1_Init(uint32_t Bound);
    
    
    #endif
    
    
    

    oled.c

    #include "stm32f10x.h"
    #include "OLED_Font.h"
    #include "stdio.h"
    
    /*引脚配置*/
    #define OLED_W_SCL(x)		GPIO_WriteBit(GPIOB, GPIO_Pin_8, (BitAction)(x))
    #define OLED_W_SDA(x)		GPIO_WriteBit(GPIOB, GPIO_Pin_9, (BitAction)(x))
    
    /*引脚初始化*/
    void OLED_I2C_Init(void)
    {
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    	
    	GPIO_InitTypeDef GPIO_InitStructure;
     	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
    	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
     	GPIO_Init(GPIOB, &GPIO_InitStructure);
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
     	GPIO_Init(GPIOB, &GPIO_InitStructure);
    	
    	OLED_W_SCL(1);
    	OLED_W_SDA(1);
    }
    
    /**
      * @brief  I2C开始
      * @param  无
      * @retval 无
      */
    void OLED_I2C_Start(void)
    {
    	OLED_W_SDA(1);
    	OLED_W_SCL(1);
    	OLED_W_SDA(0);
    	OLED_W_SCL(0);
    }
    
    /**
      * @brief  I2C停止
      * @param  无
      * @retval 无
      */
    void OLED_I2C_Stop(void)
    {
    	OLED_W_SDA(0);
    	OLED_W_SCL(1);
    	OLED_W_SDA(1);
    }
    
    /**
      * @brief  I2C发送一个字节
      * @param  Byte 要发送的一个字节
      * @retval 无
      */
    void OLED_I2C_SendByte(uint8_t Byte)
    {
    	uint8_t i;
    	for (i = 0; i < 8; i++)
    	{
    		OLED_W_SDA(Byte & (0x80 >> i));
    		OLED_W_SCL(1);
    		OLED_W_SCL(0);
    	}
    	OLED_W_SCL(1);	//额外的一个时钟,不处理应答信号
    	OLED_W_SCL(0);
    }
    
    /**
      * @brief  OLED写命令
      * @param  Command 要写入的命令
      * @retval 无
      */
    void OLED_WriteCommand(uint8_t Command)
    {
    	OLED_I2C_Start();
    	OLED_I2C_SendByte(0x78);		//从机地址
    	OLED_I2C_SendByte(0x00);		//写命令
    	OLED_I2C_SendByte(Command); 
    	OLED_I2C_Stop();
    }
    
    /**
      * @brief  OLED写数据
      * @param  Data 要写入的数据
      * @retval 无
      */
    void OLED_WriteData(uint8_t Data)
    {
    	OLED_I2C_Start();
    	OLED_I2C_SendByte(0x78);		//从机地址
    	OLED_I2C_SendByte(0x40);		//写数据
    	OLED_I2C_SendByte(Data);
    	OLED_I2C_Stop();
    }
    
    /**
      * @brief  OLED设置光标位置
      * @param  Y 以左上角为原点,向下方向的坐标,范围:0~7
      * @param  X 以左上角为原点,向右方向的坐标,范围:0~127
      * @retval 无
      */
    void OLED_SetCursor(uint8_t Y, uint8_t X)
    {
    	OLED_WriteCommand(0xB0 | Y);					//设置Y位置
    	OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4));	//设置X位置高4位
    	OLED_WriteCommand(0x00 | (X & 0x0F));			//设置X位置低4位
    }
    
    /**
      * @brief  OLED清屏
      * @param  无
      * @retval 无
      */
    void OLED_Clear(void)
    {  
    	uint8_t i, j;
    	for (j = 0; j < 8; j++)
    	{
    		OLED_SetCursor(j, 0);
    		for(i = 0; i < 128; i++)
    		{
    			OLED_WriteData(0x00);
    		}
    	}
    }
    
    /**
      * @brief  OLED显示一个字符
      * @param  Line 行位置,范围:1~4
      * @param  Column 列位置,范围:1~16
      * @param  Char 要显示的一个字符,范围:ASCII可见字符
      * @retval 无
      */
    void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char)
    {      	
    	uint8_t i;
    	OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8);		//设置光标位置在上半部分
    	for (i = 0; i < 8; i++)
    	{
    		OLED_WriteData(OLED_F8x16[Char - ' '][i]);			//显示上半部分内容
    	}
    	OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8);	//设置光标位置在下半部分
    	for (i = 0; i < 8; i++)
    	{
    		OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]);		//显示下半部分内容
    	}
    }
    
    /**
      * @brief  OLED显示字符串
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  String 要显示的字符串,范围:ASCII可见字符
      * @retval 无
      */
    void OLED_ShowString(uint8_t Line, uint8_t Column, char *String)
    {
    	uint8_t i;
    	for (i = 0; String[i] != '\0'; i++)
    	{
    		OLED_ShowChar(Line, Column + i, String[i]);
    	}
    }
    
    /**
      * @brief  OLED次方函数
      * @retval 返回值等于X的Y次方
      */
    uint32_t OLED_Pow(uint32_t X, uint32_t Y)
    {
    	uint32_t Result = 1;
    	while (Y--)
    	{
    		Result *= X;
    	}
    	return Result;
    }
    
    /**
      * @brief  OLED显示数字(十进制,正数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:0~4294967295
      * @param  Length 要显示数字的长度,范围:1~10
      * @retval 无
      */
    void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
    {
    	uint8_t i;
    	for (i = 0; i < Length; i++)							
    	{
    		OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0');
    	}
    }
    
    /**
      * @brief  OLED显示数字(十进制,带符号数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:-2147483648~2147483647
      * @param  Length 要显示数字的长度,范围:1~10
      * @retval 无
      */
    void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length)
    {
    	uint8_t i;
    	uint32_t Number1;
    	if (Number >= 0)
    	{
    		OLED_ShowChar(Line, Column, '+');
    		Number1 = Number;
    	}
    	else
    	{
    		OLED_ShowChar(Line, Column, '-');
    		Number1 = -Number;
    	}
    	for (i = 0; i < Length; i++)							
    	{
    		OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0');
    	}
    }
    
    /**
      * @brief  OLED显示数字(十六进制,正数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:0~0xFFFFFFFF
      * @param  Length 要显示数字的长度,范围:1~8
      * @retval 无
      */
    void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
    {
    	uint8_t i, SingleNumber;
    	for (i = 0; i < Length; i++)							
    	{
    		SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16;
    		if (SingleNumber < 10)
    		{
    			OLED_ShowChar(Line, Column + i, SingleNumber + '0');
    		}
    		else
    		{
    			OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A');
    		}
    	}
    }
    
    /**
      * @brief  OLED显示数字(二进制,正数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:0~1111 1111 1111 1111
      * @param  Length 要显示数字的长度,范围:1~16
      * @retval 无
      */
    void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
    {
    	uint8_t i;
    	for (i = 0; i < Length; i++)							
    	{
    		OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0');
    	}
    }
    
    /**
      * @brief  OLED初始化
      * @param  无
      * @retval 无
      */
    void OLED_Init(void)
    {
    	uint32_t i, j;
    	
    	for (i = 0; i < 1000; i++)			//上电延时
    	{
    		for (j = 0; j < 1000; j++);
    	}
    	
    	OLED_I2C_Init();			//端口初始化
    	
    	OLED_WriteCommand(0xAE);	//关闭显示
    	
    	OLED_WriteCommand(0xD5);	//设置显示时钟分频比/振荡器频率
    	OLED_WriteCommand(0x80);
    	
    	OLED_WriteCommand(0xA8);	//设置多路复用率
    	OLED_WriteCommand(0x3F);
    	
    	OLED_WriteCommand(0xD3);	//设置显示偏移
    	OLED_WriteCommand(0x00);
    	
    	OLED_WriteCommand(0x40);	//设置显示开始行
    	
    	OLED_WriteCommand(0xA1);	//设置左右方向,0xA1正常 0xA0左右反置
    	
    	OLED_WriteCommand(0xC8);	//设置上下方向,0xC8正常 0xC0上下反置
    
    	OLED_WriteCommand(0xDA);	//设置COM引脚硬件配置
    	OLED_WriteCommand(0x12);
    	
    	OLED_WriteCommand(0x81);	//设置对比度控制
    	OLED_WriteCommand(0xCF);
    
    	OLED_WriteCommand(0xD9);	//设置预充电周期
    	OLED_WriteCommand(0xF1);
    
    	OLED_WriteCommand(0xDB);	//设置VCOMH取消选择级别
    	OLED_WriteCommand(0x30);
    
    	OLED_WriteCommand(0xA4);	//设置整个显示打开/关闭
    
    	OLED_WriteCommand(0xA6);	//设置正常/倒转显示
    
    	OLED_WriteCommand(0x8D);	//设置充电泵
    	OLED_WriteCommand(0x14);
    
    	OLED_WriteCommand(0xAF);	//开启显示
    		
    	OLED_Clear();				//OLED清屏
    }
    
    
    
    

    oled.h 

    #ifndef __OLED_H
    #define __OLED_H
    
    void OLED_Init(void);
    void OLED_Clear(void);
    void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char);
    void OLED_ShowString(uint8_t Line, uint8_t Column, char *String);
    void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
    void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length);
    void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
    void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
    
    #endif
    
    
    
    

    oled_Font.h

    #ifndef __OLED_FONT_H
    #define __OLED_FONT_H
    
    /*OLED字模库,宽8像素,高16像素*/
    const uint8_t OLED_F8x16[][16]=
    {
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//  0
    	
    	0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x33,0x30,0x00,0x00,0x00,//! 1
    	
    	0x00,0x10,0x0C,0x06,0x10,0x0C,0x06,0x00,
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//" 2
    	
    	0x40,0xC0,0x78,0x40,0xC0,0x78,0x40,0x00,
    	0x04,0x3F,0x04,0x04,0x3F,0x04,0x04,0x00,//# 3
    	
    	0x00,0x70,0x88,0xFC,0x08,0x30,0x00,0x00,
    	0x00,0x18,0x20,0xFF,0x21,0x1E,0x00,0x00,//$ 4
    	
    	0xF0,0x08,0xF0,0x00,0xE0,0x18,0x00,0x00,
    	0x00,0x21,0x1C,0x03,0x1E,0x21,0x1E,0x00,//% 5
    	
    	0x00,0xF0,0x08,0x88,0x70,0x00,0x00,0x00,
    	0x1E,0x21,0x23,0x24,0x19,0x27,0x21,0x10,//& 6
    	
    	0x10,0x16,0x0E,0x00,0x00,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//' 7
    	
    	0x00,0x00,0x00,0xE0,0x18,0x04,0x02,0x00,
    	0x00,0x00,0x00,0x07,0x18,0x20,0x40,0x00,//( 8
    	
    	0x00,0x02,0x04,0x18,0xE0,0x00,0x00,0x00,
    	0x00,0x40,0x20,0x18,0x07,0x00,0x00,0x00,//) 9
    	
    	0x40,0x40,0x80,0xF0,0x80,0x40,0x40,0x00,
    	0x02,0x02,0x01,0x0F,0x01,0x02,0x02,0x00,//* 10
    	
    	0x00,0x00,0x00,0xF0,0x00,0x00,0x00,0x00,
    	0x01,0x01,0x01,0x1F,0x01,0x01,0x01,0x00,//+ 11
    	
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
    	0x80,0xB0,0x70,0x00,0x00,0x00,0x00,0x00,//, 12
    	
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
    	0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,//- 13
    	
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
    	0x00,0x30,0x30,0x00,0x00,0x00,0x00,0x00,//. 14
    	
    	0x00,0x00,0x00,0x00,0x80,0x60,0x18,0x04,
    	0x00,0x60,0x18,0x06,0x01,0x00,0x00,0x00,/// 15
    	
    	0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,
    	0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00,//0 16
    	
    	0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,
    	0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//1 17
    	
    	0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,
    	0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00,//2 18
    	
    	0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,
    	0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00,//3 19
    	
    	0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,
    	0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00,//4 20
    	
    	0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,
    	0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00,//5 21
    	
    	0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,
    	0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00,//6 22
    	
    	0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,
    	0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00,//7 23
    	
    	0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,
    	0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00,//8 24
    	
    	0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,
    	0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00,//9 25
    	
    	0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,//: 26
    	
    	0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00,
    	0x00,0x00,0x80,0x60,0x00,0x00,0x00,0x00,//; 27
    	
    	0x00,0x00,0x80,0x40,0x20,0x10,0x08,0x00,
    	0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x00,//< 28
    	
    	0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00,
    	0x04,0x04,0x04,0x04,0x04,0x04,0x04,0x00,//= 29
    	
    	0x00,0x08,0x10,0x20,0x40,0x80,0x00,0x00,
    	0x00,0x20,0x10,0x08,0x04,0x02,0x01,0x00,//> 30
    	
    	0x00,0x70,0x48,0x08,0x08,0x08,0xF0,0x00,
    	0x00,0x00,0x00,0x30,0x36,0x01,0x00,0x00,//? 31
    	
    	0xC0,0x30,0xC8,0x28,0xE8,0x10,0xE0,0x00,
    	0x07,0x18,0x27,0x24,0x23,0x14,0x0B,0x00,//@ 32
    	
    	0x00,0x00,0xC0,0x38,0xE0,0x00,0x00,0x00,
    	0x20,0x3C,0x23,0x02,0x02,0x27,0x38,0x20,//A 33
    	
    	0x08,0xF8,0x88,0x88,0x88,0x70,0x00,0x00,
    	0x20,0x3F,0x20,0x20,0x20,0x11,0x0E,0x00,//B 34
    	
    	0xC0,0x30,0x08,0x08,0x08,0x08,0x38,0x00,
    	0x07,0x18,0x20,0x20,0x20,0x10,0x08,0x00,//C 35
    	
    	0x08,0xF8,0x08,0x08,0x08,0x10,0xE0,0x00,
    	0x20,0x3F,0x20,0x20,0x20,0x10,0x0F,0x00,//D 36
    	
    	0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,
    	0x20,0x3F,0x20,0x20,0x23,0x20,0x18,0x00,//E 37
    	
    	0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,
    	0x20,0x3F,0x20,0x00,0x03,0x00,0x00,0x00,//F 38
    	
    	0xC0,0x30,0x08,0x08,0x08,0x38,0x00,0x00,
    	0x07,0x18,0x20,0x20,0x22,0x1E,0x02,0x00,//G 39
    	
    	0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,
    	0x20,0x3F,0x21,0x01,0x01,0x21,0x3F,0x20,//H 40
    	
    	0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0x00,
    	0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//I 41
    	
    	0x00,0x00,0x08,0x08,0xF8,0x08,0x08,0x00,
    	0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,0x00,//J 42
    	
    	0x08,0xF8,0x88,0xC0,0x28,0x18,0x08,0x00,
    	0x20,0x3F,0x20,0x01,0x26,0x38,0x20,0x00,//K 43
    	
    	0x08,0xF8,0x08,0x00,0x00,0x00,0x00,0x00,
    	0x20,0x3F,0x20,0x20,0x20,0x20,0x30,0x00,//L 44
    	
    	0x08,0xF8,0xF8,0x00,0xF8,0xF8,0x08,0x00,
    	0x20,0x3F,0x00,0x3F,0x00,0x3F,0x20,0x00,//M 45
    	
    	0x08,0xF8,0x30,0xC0,0x00,0x08,0xF8,0x08,
    	0x20,0x3F,0x20,0x00,0x07,0x18,0x3F,0x00,//N 46
    	
    	0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,
    	0x0F,0x10,0x20,0x20,0x20,0x10,0x0F,0x00,//O 47
    	
    	0x08,0xF8,0x08,0x08,0x08,0x08,0xF0,0x00,
    	0x20,0x3F,0x21,0x01,0x01,0x01,0x00,0x00,//P 48
    	
    	0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,
    	0x0F,0x18,0x24,0x24,0x38,0x50,0x4F,0x00,//Q 49
    	
    	0x08,0xF8,0x88,0x88,0x88,0x88,0x70,0x00,
    	0x20,0x3F,0x20,0x00,0x03,0x0C,0x30,0x20,//R 50
    	
    	0x00,0x70,0x88,0x08,0x08,0x08,0x38,0x00,
    	0x00,0x38,0x20,0x21,0x21,0x22,0x1C,0x00,//S 51
    	
    	0x18,0x08,0x08,0xF8,0x08,0x08,0x18,0x00,
    	0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//T 52
    	
    	0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,
    	0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//U 53
    	
    	0x08,0x78,0x88,0x00,0x00,0xC8,0x38,0x08,
    	0x00,0x00,0x07,0x38,0x0E,0x01,0x00,0x00,//V 54
    	
    	0xF8,0x08,0x00,0xF8,0x00,0x08,0xF8,0x00,
    	0x03,0x3C,0x07,0x00,0x07,0x3C,0x03,0x00,//W 55
    	
    	0x08,0x18,0x68,0x80,0x80,0x68,0x18,0x08,
    	0x20,0x30,0x2C,0x03,0x03,0x2C,0x30,0x20,//X 56
    	
    	0x08,0x38,0xC8,0x00,0xC8,0x38,0x08,0x00,
    	0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//Y 57
    	
    	0x10,0x08,0x08,0x08,0xC8,0x38,0x08,0x00,
    	0x20,0x38,0x26,0x21,0x20,0x20,0x18,0x00,//Z 58
    	
    	0x00,0x00,0x00,0xFE,0x02,0x02,0x02,0x00,
    	0x00,0x00,0x00,0x7F,0x40,0x40,0x40,0x00,//[ 59
    	
    	0x00,0x0C,0x30,0xC0,0x00,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x01,0x06,0x38,0xC0,0x00,//\ 60
    	
    	0x00,0x02,0x02,0x02,0xFE,0x00,0x00,0x00,
    	0x00,0x40,0x40,0x40,0x7F,0x00,0x00,0x00,//] 61
    	
    	0x00,0x00,0x04,0x02,0x02,0x02,0x04,0x00,
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//^ 62
    	
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
    	0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,//_ 63
    	
    	0x00,0x02,0x02,0x04,0x00,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//` 64
    	
    	0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,
    	0x00,0x19,0x24,0x22,0x22,0x22,0x3F,0x20,//a 65
    	
    	0x08,0xF8,0x00,0x80,0x80,0x00,0x00,0x00,
    	0x00,0x3F,0x11,0x20,0x20,0x11,0x0E,0x00,//b 66
    	
    	0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00,
    	0x00,0x0E,0x11,0x20,0x20,0x20,0x11,0x00,//c 67
    	
    	0x00,0x00,0x00,0x80,0x80,0x88,0xF8,0x00,
    	0x00,0x0E,0x11,0x20,0x20,0x10,0x3F,0x20,//d 68
    	
    	0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,
    	0x00,0x1F,0x22,0x22,0x22,0x22,0x13,0x00,//e 69
    	
    	0x00,0x80,0x80,0xF0,0x88,0x88,0x88,0x18,
    	0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//f 70
    	
    	0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,
    	0x00,0x6B,0x94,0x94,0x94,0x93,0x60,0x00,//g 71
    	
    	0x08,0xF8,0x00,0x80,0x80,0x80,0x00,0x00,
    	0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//h 72
    	
    	0x00,0x80,0x98,0x98,0x00,0x00,0x00,0x00,
    	0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//i 73
    	
    	0x00,0x00,0x00,0x80,0x98,0x98,0x00,0x00,
    	0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,//j 74
    	
    	0x08,0xF8,0x00,0x00,0x80,0x80,0x80,0x00,
    	0x20,0x3F,0x24,0x02,0x2D,0x30,0x20,0x00,//k 75
    	
    	0x00,0x08,0x08,0xF8,0x00,0x00,0x00,0x00,
    	0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//l 76
    	
    	0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x00,
    	0x20,0x3F,0x20,0x00,0x3F,0x20,0x00,0x3F,//m 77
    	
    	0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,
    	0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//n 78
    	
    	0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,
    	0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//o 79
    	
    	0x80,0x80,0x00,0x80,0x80,0x00,0x00,0x00,
    	0x80,0xFF,0xA1,0x20,0x20,0x11,0x0E,0x00,//p 80
    	
    	0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x00,
    	0x00,0x0E,0x11,0x20,0x20,0xA0,0xFF,0x80,//q 81
    	
    	0x80,0x80,0x80,0x00,0x80,0x80,0x80,0x00,
    	0x20,0x20,0x3F,0x21,0x20,0x00,0x01,0x00,//r 82
    	
    	0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,
    	0x00,0x33,0x24,0x24,0x24,0x24,0x19,0x00,//s 83
    	
    	0x00,0x80,0x80,0xE0,0x80,0x80,0x00,0x00,
    	0x00,0x00,0x00,0x1F,0x20,0x20,0x00,0x00,//t 84
    	
    	0x80,0x80,0x00,0x00,0x00,0x80,0x80,0x00,
    	0x00,0x1F,0x20,0x20,0x20,0x10,0x3F,0x20,//u 85
    	
    	0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,
    	0x00,0x01,0x0E,0x30,0x08,0x06,0x01,0x00,//v 86
    	
    	0x80,0x80,0x00,0x80,0x00,0x80,0x80,0x80,
    	0x0F,0x30,0x0C,0x03,0x0C,0x30,0x0F,0x00,//w 87
    	
    	0x00,0x80,0x80,0x00,0x80,0x80,0x80,0x00,
    	0x00,0x20,0x31,0x2E,0x0E,0x31,0x20,0x00,//x 88
    	
    	0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,
    	0x80,0x81,0x8E,0x70,0x18,0x06,0x01,0x00,//y 89
    	
    	0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00,
    	0x00,0x21,0x30,0x2C,0x22,0x21,0x30,0x00,//z 90
    	
    	0x00,0x00,0x00,0x00,0x80,0x7C,0x02,0x02,
    	0x00,0x00,0x00,0x00,0x00,0x3F,0x40,0x40,//{ 91
    	
    	0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,
    	0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,//| 92
    	
    	0x00,0x02,0x02,0x7C,0x80,0x00,0x00,0x00,
    	0x00,0x40,0x40,0x3F,0x00,0x00,0x00,0x00,//} 93
    	
    	0x00,0x06,0x01,0x01,0x02,0x02,0x04,0x04,
    	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//~ 94
    };
    
    #endif
    
    
    
    

     

    main.c

    #include "stm32f10x.h"                  // Device header
    #include "MyConfig.h"
    //#include "stdio.h"
    
    extern int16_t TargerNum;          
    extern int16_t Find_Task;          
    extern int16_t LoR;
    
    
    int main(void)
    {
    
    	Usart1_Init(115200);	
    	OLED_Init();
    	OLED_ShowString(1,1,"TargerNum:");
    	OLED_ShowString(2,1,"LoR:");
    	OLED_ShowString(3,1,"Find_Task: ");
    
    
    	while (1)
    	{
    		OLED_ShowNum(1,11,TargerNum,2);
    		OLED_ShowNum(2,5,LoR,2);
    		OLED_ShowNum(3,11,Find_Task,2);
            
        }
    }
    

     六、完整代码2(stm32端发送openmv接收)

    1.stm32端

    #include "stm32f10x.h"                  // Device header
    #include "MyConfig.h"
    //#include "stdio.h"
    uint8_t RoadLineCheck[2] = {0,0};
    uint8_t RoadLine;
    extern int16_t TargerNum;          
    extern int16_t Find_Task;          
    extern int16_t LoR;
    void Usart1_Sendata(u8 * str)
    {	
    	u8 i = 0;
    	
    	USART_SendData(USART1,0x0d);
    	while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
    	
    	for(i = 0;i < 2;i++)
    	{
    		USART_SendData(USART1,str[i]);
    		while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
    	}
    
    	USART_SendData(USART1,0x5b);
    	while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
    }
    
    
    int main(void)
    {
    	NVIC_Config();
    	Usart1_Init(115200);	
    	Find_Task=2;
    	u8 send_buff[2] = {TargerNum,Find_Task};
    
    	while (1)
    	{
            Usart1_Sendata(send_buff);
        }
    }

    2.openmv端

    import time, image,sensor,math,pyb,ustruct
    from image import SEARCH_EX, SEARCH_DS
    from pyb import Pin, Timer,LED
    
    #从imgae模块引入SEARCH_EX和SEARCH_DS。使用from import仅仅引入SEARCH_EX,
    #SEARCH_DS两个需要的部分,而不把image模块全部引入。
    
    
    sensor.reset()
    
    # Set sensor settings
    sensor.set_contrast(1)
    sensor.set_gainceiling(16)
    # Max resolution for template matching with SEARCH_EX is QQVGA
    sensor.set_framesize(sensor.QQVGA)
    # You can set windowing to reduce the search image.
    
    sensor.set_pixformat(sensor.GRAYSCALE)
    
    sensor.set_windowing(0, 40, 160, 40)  #观察窗口  后面ROI设置也会以这个为新的基准
    
    rx_buff=[]
    state = 0
    tx_flag = 0
    
    x = 0
    
    Find_Task =1       #1
    Target_Num =0
    data = [0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00]
    
    
    uart = pyb.UART(3, 115200, timeout_char = 1000)     #定义串口1变量
    blue_led = LED(2)
    
    
    ########串口接收数据函数处理#########
    def Receive_Prepare():      #data
        global state
        global x
        global tx_flag
        global data
        global Find_Task
        global Target_Num
        if state==0:
            data[0]=uart.readchar()
            if data[0] == 0x0d:#帧头
                state = 1
            else:
                state = 0
                rx_buff.clear()
        elif state==1:
            data[1]=uart.readchar()
            Target_Num=data[x+1]
            state = 2
        elif state==2:
            data[2]=uart.readchar()
            Find_Task=data[x+2]
            state = 3
        elif state == 3:
            data[4]=uart.readchar()
            if data[4] == 0x5b:
                state = 4
        elif state == 4:
            state=0
    
        else:
            state = 0
            rx_buff.clear()
    
    
    
    
    
    clock = time.clock()
    # Run template matching
    while (True):
        clock.tick()
        img = sensor.snapshot()# 镜头初始化
        if(uart.any()>0):
           Receive_Prepare()
    
        print(clock.fps(),Find_Task, Target_Num)
    
    
    

    总结

    这里对文章进行总结:

    个人认为这套代码比较通俗易懂,稍微读懂一点直接移植就好(可能需要根据实际略微修改)。

    要移植的话最好选择完整代码这边

    stm32端用的是串口1,openmv端用的是串口3;
    固定包长并不是只能三个或者两个数据位,是代码编写设置好的不超过缓存区的数据位是自定义的,只是运用的时候会根据设置好的数据位发送/接收。

    物联沃分享整理
    物联沃-IOTWORD物联网 » 基于标准库的STM32与OpenMV相互发送与接收详解

    发表评论