ArduPilot飞控启动&运行过程简介

  • 1. 源由
  • 2. Copter飞控
  • 2.1 入口
  • 2.2 启动(run)
  • 2.3 运行(main_loop)
  • 3. Ardunio编程
  • 3.1 setup – AP_Vehicle::setup
  • 3.2 loop – AP_Vehicle::loop
  • 4. ArduCopter任务
  • 5. 参考资料
  • 1. 源由

    ArduPilot从整体的设计框架角度,感觉是更加容易上手,尤其是对一些相对熟悉C语言/嵌入式固件开发的兄弟们来说。

    1. 基于Ardunio编程方式
    2. 采用C++类方式进行抽象
    3. 应用业务模块化
    4. 模块考虑重复利用
    5. 设备代码工程隔离
    6. ArduPilot自研任务调度

    注:飞控由于其历史发展以及时间同步因素,大量的使用了自研的任务调度,这个和常见的OS任务调度有很大的差异,请大家特别注意。

    为了更好从一个整体来理解ArduPilot代码行为,我们直接从启动&运行过程入手,围绕这根主线,类似鱼骨图方式展开研读和学习。

    2. Copter飞控

    鉴于官网文档也指出,从设计文档的角度来说,Copter相对详细(尽快也已经很久没有更新了)。因此,我们就重点关注Copter的启动&运行过程。

    2.1 入口

    ArduCopter/Copter.cpp

    AP_HAL_MAIN_CALLBACKS(&copter);
    

    libraries/AP_HAL/AP_HAL_Main.h

    #ifndef AP_MAIN
    #define AP_MAIN main
    #endif
    
    #define AP_HAL_MAIN() \
        AP_HAL::HAL::FunCallbacks callbacks(setup, loop); \
        extern "C" {                               \
        int AP_MAIN(int argc, char* const argv[]); \
        int AP_MAIN(int argc, char* const argv[]) { \
            hal.run(argc, argv, &callbacks); \
            return 0; \
        } \
        }
    
    #define AP_HAL_MAIN_CALLBACKS(CALLBACKS) extern "C" { \
        int AP_MAIN(int argc, char* const argv[]); \
        int AP_MAIN(int argc, char* const argv[]) { \
            hal.run(argc, argv, CALLBACKS); \
            return 0; \
        } \
        }
    

    2.2 启动(run)

    根据Copter硬件配置情况,可能使用不同的OS操作系统。

    通常情况来说,硬件采用ChibiOS嵌入式操作系统。

    libraries/AP_HAL_ChibiOS/HAL_ChibiOS_Class.cpp

    void HAL_ChibiOS::run(int argc, char * const argv[], Callbacks* callbacks) const
     ├──> <HAL_USE_SERIAL_USB == TRUE> usb_initialise()
     ├──> <HAL_STDOUT_SERIAL> sdStart((SerialDriver*)&HAL_STDOUT_SERIAL, &stdoutcfg)  //STDOUT Initialisation
     ├──> g_callbacks = callbacks
     └──> main_loop()  //Takeover main
    

    这里的callbacks=&copter,而Copter对象继承自AP_Vehicle。所以可以知道g_callbacks里面所带的setup/loop是AP_Vehicle::setup/AP_Vehicle::loop。

    ArduCopter/Copter.h

    class Copter : public AP_Vehicle {
    

    2.3 运行(main_loop)

    libraries/AP_HAL_ChibiOS/HAL_ChibiOS_Class.cpp

    static void main_loop()
     ├──> daemon_task = chThdGetSelfX();
     ├──> chThdSetPriority(APM_MAIN_PRIORITY);  //switch to high priority for main loop
     ├──> <HAL_I2C_CLEAR_BUS> ChibiOS::I2CBus::clear_all();
     ├──> <AP_HAL_SHARED_DMA_ENABLED> ChibiOS::Shared_DMA::init();
     ├──> peripheral_power_enable();
     ├──> <HAL_SPI_CHECK_CLOCK_FREQ> ChibiOS::SPIDevice::test_clock_freq();
     ├──> hal.analogin->init();
    
     ##################################################
     # hal.scheduler                                  #
     ##################################################
     ├──> hal.scheduler->init();
     
     ├──> hal_chibios_set_priority(APM_STARTUP_PRIORITY);
     ├──> <stm32_was_watchdog_reset()> 
     │   ├──> stm32_watchdog_load((uint32_t *)&utilInstance.persistent_data, (sizeof(utilInstance.persistent_data)+3)/4);
     │   └──> utilInstance.last_persistent_data = utilInstance.persistent_data;
     ├──> schedulerInstance.hal_initialized();
     
     ##################################################
     # AP_Vehicle::setup                              #
     ##################################################
     
     ├──> g_callbacks->setup();
     ├──> <HAL_ENABLE_SAVE_PERSISTENT_PARAMS> utilInstance.apply_persistent_params();
     ├──> <HAL_FLASH_PROTECTION> 
     │   ├──> <AP_BoardConfig::unlock_flash()> stm32_flash_unprotect_flash();
     │   └──> <else> stm32_flash_protect_flash(false, AP_BoardConfig::protect_flash()); stm32_flash_protect_flash(true, AP_BoardConfig::protect_bootloader());
     ├──> <!defined(DISABLE_WATCHDOG)>
     │   ├──> <IOMCU_FW> stm32_watchdog_init();
     │   └──> <!IOMCU_FW>
     │       ├──> <AP_BoardConfig::watchdog_enabled()> stm32_watchdog_init();
     │       └──> <hal.util->was_watchdog_reset()> INTERNAL_ERROR(AP_InternalError::error_t::watchdog_reset);
     ├──> schedulerInstance.watchdog_pat();
     ├──> hal.scheduler->set_system_initialized();
     ├──> thread_running = true;
     ├──> chRegSetThreadName(SKETCHNAME);
     ├──> chThdSetPriority(APM_MAIN_PRIORITY); //switch to high priority for main loop
     ├──> <while (true)>
     
     ##################################################
     # AP_Vehicle::loop                               #
     ##################################################
     
     │   ├──> g_callbacks->loop();
     │   ├──> <!defined(HAL_DISABLE_LOOP_DELAY) && !APM_BUILD_TYPE(APM_BUILD_Replay)> <!schedulerInstance.check_called_boost()> hal.scheduler->delay_microseconds(50);
     │   └──> schedulerInstance.watchdog_pat();
     └──> thread_running = false;
    

    3. Ardunio编程

    因为基于Ardunio编程方式,所以在启动&运行过程中,先调用setup进行初始化设备,在主线程中进行loop运行。

    3.1 setup – AP_Vehicle::setup

    libraries/AP_Vehicle/AP_Vehicle.cpp

    void AP_Vehicle::setup()
     ├──> AP_Param::setup_sketch_defaults(); // load the default values of variables listed in var_info[]
     ├──> serial_manager.init_console();  // initialise serial port
     ├──> DEV_PRINTF("\n\nInit %s"
     │                      "\n\nFree RAM: %u\n",
     │                      AP::fwversion().fw_string,
     │                      (unsigned)hal.util->available_memory());
     ├──> <AP_CHECK_FIRMWARE_ENABLED> check_firmware_print();
     ├──> AP_Param::check_var_info(); // validate the static parameter table,
     ├──> load_parameters();  // then load persistentvalues from storage:
     ├──> <CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS> <AP_BoardConfig::get_sdcard_slowdown() != 0> // user wants the SDcard slower, we need to remount
     │   ├──> sdcard_stop();
     │   └──> sdcard_retry();
     ├──> get_scheduler_tasks(tasks, task_count, log_bit);
     ├──> AP::scheduler().init(tasks, task_count, log_bit);
     ├──> G_Dt = scheduler.get_loop_period_s();  // time per loop - this gets updated in the main loop() based on actual loop rate
     
     ##################################################
     # this is here for Plane; its failsafe_check method requires the
     # RC channels to be set as early as possible for maximum
     # survivability.
     ##################################################
     
     ├──> set_control_channels();
    
     ##################################################
     # initialise serial manager as early as sensible to get
     # diagnostic output during boot process.  We have to initialise
     # the GCS singleton first as it sets the global mavlink system ID
     # which may get used very early on.
     ##################################################
    
     ├──> gcs().init();
    
     ##################################################
     # initialise serial ports                        #
     ##################################################
     
     ├──> serial_manager.init();
     ├──> gcs().setup_console();
    
     ##################################################
     # Register scheduler_delay_cb, which will run anytime you have
     # more than 5ms remaining in your call to hal.scheduler->delay
     ##################################################
     
     ├──> hal.scheduler->register_delay_callback(scheduler_delay_callback, 5);
    
     ├──> <HAL_MSP_ENABLED> msp.init(); // call MSP init before init_ardupilot to allow for MSP sensors
     ├──> <HAL_EXTERNAL_AHRS_ENABLED> externalAHRS.init(); // call externalAHRS init before init_ardupilot to allow for external sensors
     ├──> init_ardupilot();  // init_ardupilot is where the vehicle does most of its initialisation.
     ├──> <AP_AIRSPEED_ENABLED>
     │   ├──> airspeed.init();
     │   ├──> <airspeed.enabled()>
     │   │   └──> airspeed.calibrate(true);
     │   └──> <APM_BUILD_TYPE(APM_BUILD_ArduPlane)> GCS_SEND_TEXT(MAV_SEVERITY_WARNING,"No airspeed sensor present or enabled");
     ├──> <!APM_BUILD_TYPE(APM_BUILD_Replay)> SRV_Channels::init(); 
     ├──> <HAL_GYROFFT_ENABLED>  // gyro FFT needs to be initialized really late
     │   └──> gyro_fft.init(AP::scheduler().get_loop_rate_hz());
     ├──> <HAL_RUNCAM_ENABLED> runcam.init();
     ├──> <HAL_HOTT_TELEM_ENABLED> hott_telem.init();
     ├──> <HAL_VISUALODOM_ENABLED> visual_odom.init();  // init library used for visual position estimation
     ├──> <AP_VIDEOTX_ENABLED> vtx.init();
     ├──> <AP_SMARTAUDIO_ENABLED> smartaudio.init();
     ├──> <AP_TRAMP_ENABLED> tramp.init();
     ├──> <AP_PARAM_KEY_DUMP> AP_Param::show_all(hal.console, true);
     ├──> send_watchdog_reset_statustext();
     ├──> <HAL_GENERATOR_ENABLED> generator.init();
     ├──> <AP_OPENDRONEID_ENABLED> opendroneid.init();
     ├──> <HAL_EFI_ENABLED> efi.init(); // init EFI monitoring
     ├──> <AP_TEMPERATURE_SENSOR_ENABLED> temperature_sensor.init();
     ├──> <AP_AIS_ENABLED> ais.init();
     ├──> <HAL_NMEA_OUTPUT_ENABLED> nmea.init();
     ├──> <AP_FENCE_ENABLED> fence.init();
     ├──> <custom_rotations.init();
     ├──> <HAL_WITH_ESC_TELEM && HAL_GYROFFT_ENABLED>
     │   └──> for (uint8_t i = 0; i<ESC_TELEM_MAX_ESCS; i++) {
     │       └──> esc_noise[i].set_cutoff_frequency(2);
     ├──> AP_Param::invalidate_count(); // invalidate count in case an enable parameter changed during initialisation
     └──> gcs().send_text(MAV_SEVERITY_INFO, "ArduPilot Ready");
    

    3.2 loop – AP_Vehicle::loop

    libraries/AP_Vehicle/AP_Vehicle.cpp

    void AP_Vehicle::loop()
     ├──> scheduler.loop();
     ├──> G_Dt = scheduler.get_loop_period_s();
     ├──> <!done_safety_init>
     │   │  /*
     │   │    disable safety if requested. This is delayed till after the
     │   │    first loop has run to ensure that all servos have received
     │   │    an update for their initial values. Otherwise we may end up
     │   │    briefly driving a servo to a position out of the configured
     │   │    range which could damage hardware
     │   │  */
     │   ├──> done_safety_init = true;
     │   ├──> BoardConfig.init_safety();
     │   ├──> char banner_msg[50];
     │   └──> <hal.rcout->get_output_mode_banner(banner_msg, sizeof(banner_msg))> GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s", banner_msg); // send RC output mode info if available
     ├──> const uint32_t new_internal_errors = AP::internalerror().errors();
     └──> _last_internal_errors != new_internal_errors>
         ├──> AP::logger().Write_Error(LogErrorSubsystem::INTERNAL_ERROR, LogErrorCode::INTERNAL_ERRORS_DETECTED);
         ├──> gcs().send_text(MAV_SEVERITY_CRITICAL, "Internal Errors 0x%x", (unsigned)new_internal_errors);
         └──> _last_internal_errors = new_internal_errors;
    

    4. ArduCopter任务

    ArduCopter任务的调用栈逻辑依次是:

    AP_Vehicle::loop
     └──> scheduler.loop
         └──> run
             └──> task.function
    

    task.function是ArduCopter/Copter.cpp中给出的任务列表对应的函数。这张表格给出了ArduCopter所有的任务。飞控运行时,将不断的通过表中任务的优先级进行切换运行。

    注:关于每个任务的执行细节方面,我们后续抽时间将会逐一研究,也请大家持续关注,谢谢!

    /*
      scheduler table - all tasks should be listed here.
    
      All entries in this table must be ordered by priority.
    
      This table is interleaved with the table in AP_Vehicle to determine
      the order in which tasks are run.  Convenience methods SCHED_TASK
      and SCHED_TASK_CLASS are provided to build entries in this structure:
    
    SCHED_TASK arguments:
     - name of static function to call
     - rate (in Hertz) at which the function should be called
     - expected time (in MicroSeconds) that the function should take to run
     - priority (0 through 255, lower number meaning higher priority)
    
    SCHED_TASK_CLASS arguments:
     - class name of method to be called
     - instance on which to call the method
     - method to call on that instance
     - rate (in Hertz) at which the method should be called
     - expected time (in MicroSeconds) that the method should take to run
     - priority (0 through 255, lower number meaning higher priority)
    
     */
    const AP_Scheduler::Task Copter::scheduler_tasks[] = {
        // update INS immediately to get current gyro data populated
        FAST_TASK_CLASS(AP_InertialSensor, &copter.ins, update),
        // run low level rate controllers that only require IMU data
        FAST_TASK(run_rate_controller),
    #if AC_CUSTOMCONTROL_MULTI_ENABLED == ENABLED
        FAST_TASK(run_custom_controller),
    #endif
    #if FRAME_CONFIG == HELI_FRAME
        FAST_TASK(heli_update_autorotation),
    #endif //HELI_FRAME
        // send outputs to the motors library immediately
        FAST_TASK(motors_output),
         // run EKF state estimator (expensive)
        FAST_TASK(read_AHRS),
    #if FRAME_CONFIG == HELI_FRAME
        FAST_TASK(update_heli_control_dynamics),
    #endif //HELI_FRAME
        // Inertial Nav
        FAST_TASK(read_inertia),
        // check if ekf has reset target heading or position
        FAST_TASK(check_ekf_reset),
        // run the attitude controllers
        FAST_TASK(update_flight_mode),
        // update home from EKF if necessary
        FAST_TASK(update_home_from_EKF),
        // check if we've landed or crashed
        FAST_TASK(update_land_and_crash_detectors),
        // surface tracking update
        FAST_TASK(update_rangefinder_terrain_offset),
    #if HAL_MOUNT_ENABLED
        // camera mount's fast update
        FAST_TASK_CLASS(AP_Mount, &copter.camera_mount, update_fast),
    #endif
        FAST_TASK(Log_Video_Stabilisation),
    
        SCHED_TASK(rc_loop,              250,    130,  3),
        SCHED_TASK(throttle_loop,         50,     75,  6),
        SCHED_TASK_CLASS(AP_GPS,               &copter.gps,                 update,          50, 200,   9),
    #if AP_OPTICALFLOW_ENABLED
        SCHED_TASK_CLASS(AP_OpticalFlow,          &copter.optflow,             update,         200, 160,  12),
    #endif
        SCHED_TASK(update_batt_compass,   10,    120, 15),
        SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&copter.g2.rc_channels, read_aux_all,    10,  50,  18),
        SCHED_TASK(arm_motors_check,      10,     50, 21),
    #if TOY_MODE_ENABLED == ENABLED
        SCHED_TASK_CLASS(ToyMode,              &copter.g2.toy_mode,         update,          10,  50,  24),
    #endif
        SCHED_TASK(auto_disarm_check,     10,     50,  27),
        SCHED_TASK(auto_trim,             10,     75,  30),
    #if RANGEFINDER_ENABLED == ENABLED
        SCHED_TASK(read_rangefinder,      20,    100,  33),
    #endif
    #if HAL_PROXIMITY_ENABLED
        SCHED_TASK_CLASS(AP_Proximity,         &copter.g2.proximity,        update,         200,  50,  36),
    #endif
    #if BEACON_ENABLED == ENABLED
        SCHED_TASK_CLASS(AP_Beacon,            &copter.g2.beacon,           update,         400,  50,  39),
    #endif
        SCHED_TASK(update_altitude,       10,    100,  42),
        SCHED_TASK(run_nav_updates,       50,    100,  45),
        SCHED_TASK(update_throttle_hover,100,     90,  48),
    #if MODE_SMARTRTL_ENABLED == ENABLED
        SCHED_TASK_CLASS(ModeSmartRTL,         &copter.mode_smartrtl,       save_position,    3, 100,  51),
    #endif
    #if HAL_SPRAYER_ENABLED
        SCHED_TASK_CLASS(AC_Sprayer,           &copter.sprayer,               update,         3,  90,  54),
    #endif
        SCHED_TASK(three_hz_loop,          3,     75, 57),
        SCHED_TASK_CLASS(AP_ServoRelayEvents,  &copter.ServoRelayEvents,      update_events, 50,  75,  60),
        SCHED_TASK_CLASS(AP_Baro,              &copter.barometer,             accumulate,    50,  90,  63),
    #if PRECISION_LANDING == ENABLED
        SCHED_TASK(update_precland,      400,     50,  69),
    #endif
    #if FRAME_CONFIG == HELI_FRAME
        SCHED_TASK(check_dynamic_flight,  50,     75,  72),
    #endif
    #if LOGGING_ENABLED == ENABLED
        SCHED_TASK(loop_rate_logging, LOOP_RATE,    50,  75),
    #endif
        SCHED_TASK_CLASS(AP_Notify,            &copter.notify,              update,          50,  90,  78),
        SCHED_TASK(one_hz_loop,            1,    100,  81),
        SCHED_TASK(ekf_check,             10,     75,  84),
        SCHED_TASK(check_vibration,       10,     50,  87),
        SCHED_TASK(gpsglitch_check,       10,     50,  90),
        SCHED_TASK(takeoff_check,         50,     50,  91),
    #if AP_LANDINGGEAR_ENABLED
        SCHED_TASK(landinggear_update,    10,     75,  93),
    #endif
        SCHED_TASK(standby_update,        100,    75,  96),
        SCHED_TASK(lost_vehicle_check,    10,     50,  99),
        SCHED_TASK_CLASS(GCS,                  (GCS*)&copter._gcs,          update_receive, 400, 180, 102),
        SCHED_TASK_CLASS(GCS,                  (GCS*)&copter._gcs,          update_send,    400, 550, 105),
    #if HAL_MOUNT_ENABLED
        SCHED_TASK_CLASS(AP_Mount,             &copter.camera_mount,        update,          50,  75, 108),
    #endif
    #if AP_CAMERA_ENABLED
        SCHED_TASK_CLASS(AP_Camera,            &copter.camera,              update,          50,  75, 111),
    #endif
    #if LOGGING_ENABLED == ENABLED
        SCHED_TASK(ten_hz_logging_loop,   10,    350, 114),
        SCHED_TASK(twentyfive_hz_logging, 25,    110, 117),
        SCHED_TASK_CLASS(AP_Logger,            &copter.logger,              periodic_tasks, 400, 300, 120),
    #endif
        SCHED_TASK_CLASS(AP_InertialSensor,    &copter.ins,                 periodic,       400,  50, 123),
    
        SCHED_TASK_CLASS(AP_Scheduler,         &copter.scheduler,           update_logging, 0.1,  75, 126),
    #if AP_RPM_ENABLED
        SCHED_TASK_CLASS(AP_RPM,               &copter.rpm_sensor,          update,          40, 200, 129),
    #endif
        SCHED_TASK_CLASS(AP_TempCalibration,   &copter.g2.temp_calibration, update,          10, 100, 135),
    #if HAL_ADSB_ENABLED
        SCHED_TASK(avoidance_adsb_update, 10,    100, 138),
    #endif
    #if ADVANCED_FAILSAFE == ENABLED
        SCHED_TASK(afs_fs_check,          10,    100, 141),
    #endif
    #if AP_TERRAIN_AVAILABLE
        SCHED_TASK(terrain_update,        10,    100, 144),
    #endif
    #if AP_GRIPPER_ENABLED
        SCHED_TASK_CLASS(AP_Gripper,           &copter.g2.gripper,          update,          10,  75, 147),
    #endif
    #if AP_WINCH_ENABLED
        SCHED_TASK_CLASS(AP_Winch,             &copter.g2.winch,            update,          50,  50, 150),
    #endif
    #ifdef USERHOOK_FASTLOOP
        SCHED_TASK(userhook_FastLoop,    100,     75, 153),
    #endif
    #ifdef USERHOOK_50HZLOOP
        SCHED_TASK(userhook_50Hz,         50,     75, 156),
    #endif
    #ifdef USERHOOK_MEDIUMLOOP
        SCHED_TASK(userhook_MediumLoop,   10,     75, 159),
    #endif
    #ifdef USERHOOK_SLOWLOOP
        SCHED_TASK(userhook_SlowLoop,      3.3,   75, 162),
    #endif
    #ifdef USERHOOK_SUPERSLOWLOOP
        SCHED_TASK(userhook_SuperSlowLoop, 1,     75, 165),
    #endif
    #if HAL_BUTTON_ENABLED
        SCHED_TASK_CLASS(AP_Button,            &copter.button,              update,           5, 100, 168),
    #endif
    #if STATS_ENABLED == ENABLED
        SCHED_TASK_CLASS(AP_Stats,             &copter.g2.stats,            update,           1, 100, 171),
    #endif
    };
    

    5. 参考资料

    【1】ArduPilot开源飞控系统之简单介绍
    【2】ArduPilot之开源代码框架
    【3】ArduPilot飞控之ubuntu22.04-SITL安装
    【4】ArduPilot飞控之ubuntu22.04-Gazebo模拟
    【5】ArduPilot飞控之Mission Planner模拟
    【6】ArduPilot飞控AOCODARC-H7DUAL固件编译
    【7】ArduPilot之开源代码Library&Sketches设计
    【8】ArduPilot之开源代码Sensor Drivers设计
    【9】ArduPilot之开源代码基础知识&Threading概念
    【10】ArduPilot之开源代码UARTs and the Console使用

    物联沃分享整理
    物联沃-IOTWORD物联网 » ArduPilot飞控启动指南

    发表评论