复数概念及运算详解(复变函数)

1. 复数 z= Re(z)+Im(z) i =x+yi (虚数单位 i,  i^{2}=-1 )

2.复数的代数运算(加减乘除)

z_{1}\pm z_{2}=(x_{1}\pm x_{2})+ (y_{1}\pm y_{2})i

z_{1}\cdot z_{2}=(x_{1}+y_{1} i)(x_{2}+y_{2}i)=(x_{1}x_{2}-y_{1}y_{2})+(x_{1}y_{2}+x_{1}y_{2})i

z_{1}\div z_{2}=\frac{z_{1}\overline{z_{2}}}{z_{2}\overline{z_{2}}}=\frac{(x_{1}+y_{1}i)\(x_{2}-y_{2}i)}{(x_{2}+y_{2}i)(x_{2}-y_{2}i)}=\frac{x_{1}x_{2}+y_{1}y_{2}}{x_{2}^{2}+y_{2}^{2}}+\frac{(x_{2}y_{1}-x_{1}y_{2})i}{x_{2}^{2}+y_{2}^{2}}

3.共轭复数的性质(加减乘除)

(1)  \overline{z_{1}\pm z_{2}}=\overline{z_{1}}\pm \overline{z_{2}}

         \overline{z_{1}\cdot z_{2}}=\overline{z_{1}}\cdot \overline{z_{2}}

        \overline{(\frac{z_{1}}{z_{2}})}=\overline{\frac{z_{1}}{\overline{z_{2}}}}

(2)z+\overline{z}=2Re(z)

        z-\overline{z}=2Im(z)

        z\cdot \overline{z}=\left [ Re(z) \right ]^{2}+\left [ Im(z) \right ]^{2}

        \frac{z}{\overline{z}}=cos(2Arg z)+sin(2Arg z )

4.复数的几何表示

复平面 z=x+iy\leftrightarrowP(x,y)

复数的模 \left | z \right | ,复数的辐角 Argz,辐角主值argz 

复数的幅角:以x轴的正向为始边,以向量 \overrightarrow{OP} 为终边的角 \theta

复数的辐角主值:满足-\pi <0\leqslant \pi的复数z的辐角

5.复数的三角表示: z=r(cos\theta +isin\theta )

6.复数的指数表示:z=re^{i\theta }  (由欧拉公式e^{i\theta }=cos\theta +isin\theta)

7.复数的乘除:两复数相乘(除),等于向量长度相乘(除),辐角相加(减)。

(1)简写: z_{1}  ❈z_{2}=(r_{1} ❈ r_{2})\cdot \left [ cos(\theta _{1}\pm \theta _{2}) +isin((\theta _{1}\pm \theta _{2})\right ]

(其中\pm意为加减运算,❈意为乘除运算)

(2)详细:记 z_{1}=r_{1}(cos\theta_{1} +isin\theta _{1})=r_{1}e^{i\theta_{1} } , z_{2}=r_{2}(cos\theta_{2} +isin\theta _{2})=r_{2}e^{i\theta_{2} } ,则

   ①     z_{1}\cdot z_{2}=r_{1}\cdot r_{2}\left [ cos(\theta _{1}+\theta _{2}) +isin((\theta _{1}+\theta _{2})\right ]

   即    \left | z_{1}z_{2} \right |=r_{1}r_{2}=\left | z_{1} \right |\left | z_{2}\right | , Arg(z_{1}\cdot z_{2})=Argz_{1}+Arg z_{2}

   ②    \frac{z_{1} }{z_{2}}=\frac{r_{1} }{r_{2}}\left [ cos(\theta _{1}-\theta _{2}) +isin((\theta _{1}-\theta _{2})\right ]

   即    \left | \frac{z_{1} }{z_{2}} \right |=\frac{r_{1} }{r_{2}}=\frac{\left | z_{1} \right |}{\left | z_{2} \right |}  ,  Arg(\frac{z_{1} }{z_{2}})=Arg z_{1}-Arg z_{2}

8.复数的乘幂

z^{k}=r^{k}(cos k\theta +sink \theta )

\sqrt[n]{\omega }=\sqrt[n]{r }(cos\frac{Arg\theta }{n}+sin\frac{Arg\theta }{n})

复数z的n次方根,一共有n个相异的根

9.复数与几何

(1)表示连接z_{1}z_{2}的直线:

z-z_{1}=t(z_{2_{}}-z_{1}),t\in (-\infty ,+\infty )

(1)表示连接z_{1}z_{2}​​​​​​​的线段:

z-z_{1}=t(z_{2_{}}-z_{1}),t\in \left [ 0,1 \right ]

10.三个复数z_{1}z_{2}z_{3}成为正三角形三个顶点\Leftrightarrowz_{1}^{^{2}}+z_{2}^{^{2}}+z_{3}^{^{2}}=z_{1}z_{2}+z_{2}z_{3}+z_{3}z_{1}

11.复球面与无穷远点

扩充复平面C_{\infty },复平面C

抛去北极点,复数可与球面上的点一一对应。引入无穷远点,用球面表示复数,扩充复平面。

          

物联沃分享整理
物联沃-IOTWORD物联网 » 复数概念及运算详解(复变函数)

发表评论