STM32-HAL库教程:CAN通讯轮询发送与中断接收详解

STM32-HAL库10-CAN通讯(轮询发送,中断接收)

一、所用材料

自制STM32F407VGT6控制板
串口调试助手X-COM
泥人CAN转USB及其配套上位机软件

二、所学内容

本文所需要实现的目标是,通过泥人CAN转USB,以上位机为主机,向STM32发送相关指令,32控制板在接收到CAN信息后将所接收数据通过串口打印至上位机的串口调试软件。

三、泥人CAN转USB及其上位机配置

四、STM32控制板HAL库配置

第一步:三件套-RCC,SYS,时钟配置

第二步:串口配置

第三步:CAN配置

相比于上一篇内部回传的CAN配置,本次需要更改部分参数,将Operating Mode改为Normal。同时别忘了打开接收中断。

五、MDK5配置

这里偷个懒,直接将实际使用的程序拿来用了,发送函数和接收中断函数等可以直接借鉴使用哈,屎山代码勿喷。

第一步:CAN.h

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    can.h
  * @brief   This file contains all the function prototypes for
  *          the can.c file
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __CAN_H__
#define __CAN_H__

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* USER CODE BEGIN Includes */
extern int32_t X_tar;
extern int now_station;
extern int run_in_can;
extern uint16_t test_time;
extern int32_t encoder1;
extern int32_t encoder2;
/* USER CODE END Includes */

extern CAN_HandleTypeDef hcan1;
extern CAN_HandleTypeDef hcan2;

/* USER CODE BEGIN Private defines */
#define CAN1_FILTER_BANK  0             ///< CAN1过滤器组编号
#define CAN2_FILTER_BANK  14            ///< CAN2过滤器组编号
/* USER CODE END Private defines */

void MX_CAN1_Init(void);
void MX_CAN2_Init(void);

/* USER CODE BEGIN Prototypes */
void CAN_Start_Init(void);

void CAN1Filter_Config(void);
void CAN1Filter_Config(void);
void CAN1_Send_Test(void);
void CAN1_Send(uint8_t* cdata);

void CAN2Filter_Config(void);
void CAN2Filter_Config(void);
void CAN2_Send_Test(void);
void CAN2_Send(uint8_t* cdata);

void GET_encoder1(void);
void GET_encoder2(void);
/* USER CODE END Prototypes */

#ifdef __cplusplus
}
#endif

#endif /* __CAN_H__ */


第二步:CAN.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    can.c
  * @brief   This file provides code for the configuration
  *          of the CAN instances.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "can.h"

/* USER CODE BEGIN 0 */
#include <stdio.h>
#include "user.h"
#include "usart.h"
#include "gpio.h"
static CAN_TxHeaderTypeDef TxMessage; //CAN发送的消息的消息头
static CAN_RxHeaderTypeDef RxMessage; //CAN接收的消息的消息头
/* USER CODE END 0 */

CAN_HandleTypeDef hcan1;
CAN_HandleTypeDef hcan2;

/* CAN1 init function */
void MX_CAN1_Init(void)
{

  /* USER CODE BEGIN CAN1_Init 0 */

  /* USER CODE END CAN1_Init 0 */

  /* USER CODE BEGIN CAN1_Init 1 */

  /* USER CODE END CAN1_Init 1 */
  hcan1.Instance = CAN1;
  hcan1.Init.Prescaler = 7;
  hcan1.Init.Mode = CAN_MODE_NORMAL;
  hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
  hcan1.Init.TimeSeg1 = CAN_BS1_4TQ;
  hcan1.Init.TimeSeg2 = CAN_BS2_7TQ;
  hcan1.Init.TimeTriggeredMode = DISABLE;
  hcan1.Init.AutoBusOff = DISABLE;
  hcan1.Init.AutoWakeUp = DISABLE;
  hcan1.Init.AutoRetransmission = DISABLE;
  hcan1.Init.ReceiveFifoLocked = DISABLE;
  hcan1.Init.TransmitFifoPriority = DISABLE;
  if (HAL_CAN_Init(&hcan1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN CAN1_Init 2 */

  /* USER CODE END CAN1_Init 2 */

}
/* CAN2 init function */
void MX_CAN2_Init(void)
{

  /* USER CODE BEGIN CAN2_Init 0 */

  /* USER CODE END CAN2_Init 0 */

  /* USER CODE BEGIN CAN2_Init 1 */

  /* USER CODE END CAN2_Init 1 */
  hcan2.Instance = CAN2;
  hcan2.Init.Prescaler = 7;
  hcan2.Init.Mode = CAN_MODE_NORMAL;
  hcan2.Init.SyncJumpWidth = CAN_SJW_1TQ;
  hcan2.Init.TimeSeg1 = CAN_BS1_4TQ;
  hcan2.Init.TimeSeg2 = CAN_BS2_1TQ;
  hcan2.Init.TimeTriggeredMode = DISABLE;
  hcan2.Init.AutoBusOff = DISABLE;
  hcan2.Init.AutoWakeUp = DISABLE;
  hcan2.Init.AutoRetransmission = DISABLE;
  hcan2.Init.ReceiveFifoLocked = DISABLE;
  hcan2.Init.TransmitFifoPriority = DISABLE;
  if (HAL_CAN_Init(&hcan2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN CAN2_Init 2 */

  /* USER CODE END CAN2_Init 2 */

}

static uint32_t HAL_RCC_CAN1_CLK_ENABLED=0;

void HAL_CAN_MspInit(CAN_HandleTypeDef* canHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(canHandle->Instance==CAN1)
  {
  /* USER CODE BEGIN CAN1_MspInit 0 */

  /* USER CODE END CAN1_MspInit 0 */
    /* CAN1 clock enable */
    HAL_RCC_CAN1_CLK_ENABLED++;
    if(HAL_RCC_CAN1_CLK_ENABLED==1){
      __HAL_RCC_CAN1_CLK_ENABLE();
    }

    __HAL_RCC_GPIOB_CLK_ENABLE();
    /**CAN1 GPIO Configuration
    PB8     ------> CAN1_RX
    PB9     ------> CAN1_TX
    */
    GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF9_CAN1;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

    /* CAN1 interrupt Init */
    HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
  /* USER CODE BEGIN CAN1_MspInit 1 */

  /* USER CODE END CAN1_MspInit 1 */
  }
  else if(canHandle->Instance==CAN2)
  {
  /* USER CODE BEGIN CAN2_MspInit 0 */

  /* USER CODE END CAN2_MspInit 0 */
    /* CAN2 clock enable */
    __HAL_RCC_CAN2_CLK_ENABLE();
    HAL_RCC_CAN1_CLK_ENABLED++;
    if(HAL_RCC_CAN1_CLK_ENABLED==1){
      __HAL_RCC_CAN1_CLK_ENABLE();
    }

    __HAL_RCC_GPIOB_CLK_ENABLE();
    /**CAN2 GPIO Configuration
    PB12     ------> CAN2_RX
    PB13     ------> CAN2_TX
    */
    GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF9_CAN2;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

    /* CAN2 interrupt Init */
    HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
  /* USER CODE BEGIN CAN2_MspInit 1 */

  /* USER CODE END CAN2_MspInit 1 */
  }
}

void HAL_CAN_MspDeInit(CAN_HandleTypeDef* canHandle)
{

  if(canHandle->Instance==CAN1)
  {
  /* USER CODE BEGIN CAN1_MspDeInit 0 */

  /* USER CODE END CAN1_MspDeInit 0 */
    /* Peripheral clock disable */
    HAL_RCC_CAN1_CLK_ENABLED--;
    if(HAL_RCC_CAN1_CLK_ENABLED==0){
      __HAL_RCC_CAN1_CLK_DISABLE();
    }

    /**CAN1 GPIO Configuration
    PB8     ------> CAN1_RX
    PB9     ------> CAN1_TX
    */
    HAL_GPIO_DeInit(GPIOB, GPIO_PIN_8|GPIO_PIN_9);

    /* CAN1 interrupt Deinit */
    HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
  /* USER CODE BEGIN CAN1_MspDeInit 1 */

  /* USER CODE END CAN1_MspDeInit 1 */
  }
  else if(canHandle->Instance==CAN2)
  {
  /* USER CODE BEGIN CAN2_MspDeInit 0 */

  /* USER CODE END CAN2_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_CAN2_CLK_DISABLE();
    HAL_RCC_CAN1_CLK_ENABLED--;
    if(HAL_RCC_CAN1_CLK_ENABLED==0){
      __HAL_RCC_CAN1_CLK_DISABLE();
    }

    /**CAN2 GPIO Configuration
    PB12     ------> CAN2_RX
    PB13     ------> CAN2_TX
    */
    HAL_GPIO_DeInit(GPIOB, GPIO_PIN_12|GPIO_PIN_13);

    /* CAN2 interrupt Deinit */
    HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
  /* USER CODE BEGIN CAN2_MspDeInit 1 */

  /* USER CODE END CAN2_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */
/*******************
接受信息过滤器
*******************/
void CAN1Filter_Config(void)
{
    CAN_FilterTypeDef  sFilterConfig;
    
    sFilterConfig.FilterBank = CAN1_FILTER_BANK;        //CAN过滤器编号,范围0-27
    sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;   //CAN过滤器模式,掩码模式或列表模式
    sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;  //CAN过滤器尺度,16位或32位
    sFilterConfig.FilterIdHigh = 0x000 << 5;			//32位下,存储要过滤ID的高16位
    sFilterConfig.FilterIdLow = 0x0000;					//32位下,存储要过滤ID的低16位
    sFilterConfig.FilterMaskIdHigh = 0x0000;			//掩码模式下,存储的是掩码
    sFilterConfig.FilterMaskIdLow = 0x0000;
    sFilterConfig.FilterFIFOAssignment = 0;				//报文通过过滤器的匹配后,存储到哪个FIFO
    sFilterConfig.FilterActivation = ENABLE;    		//激活过滤器
    sFilterConfig.SlaveStartFilterBank = CAN2_FILTER_BANK;
    
    if (HAL_CAN_ConfigFilter(&hcan1, &sFilterConfig) != HAL_OK) 
		 {
        Error_Handler();
       }
	else{ printf("HAL_CAN_ConfigFilter1 is HAL_OK\r\n"); }	 
}

void CAN2Filter_Config(void)
{
    CAN_FilterTypeDef  sFilterConfig;
    
    sFilterConfig.FilterBank = CAN2_FILTER_BANK;        //CAN过滤器编号,范围0-27
    sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;   //CAN过滤器模式,掩码模式或列表模式
    sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;  //CAN过滤器尺度,16位或32位
    sFilterConfig.FilterIdHigh = 0x000 << 5;			//32位下,存储要过滤ID的高16位
    sFilterConfig.FilterIdLow = 0x0000;					//32位下,存储要过滤ID的低16位
    sFilterConfig.FilterMaskIdHigh = 0x0000;			//掩码模式下,存储的是掩码
    sFilterConfig.FilterMaskIdLow = 0x0000;
    sFilterConfig.FilterFIFOAssignment = 0;				//报文通过过滤器的匹配后,存储到哪个FIFO
    sFilterConfig.FilterActivation = ENABLE;    		//激活过滤器
    sFilterConfig.SlaveStartFilterBank = 0;
    
    if (HAL_CAN_ConfigFilter(&hcan2, &sFilterConfig) != HAL_OK) 
		 {
        Error_Handler();
       }
	else{ printf("HAL_CAN_ConfigFilter2 is HAL_OK\r\n"); }	 
}

/*******************
发送函数
*******************/
void GET_encoder1(void)
{
    uint32_t TxMailbox;
    uint8_t data[4] = {0x04,0x01,0x01,0x00};
    TxMessage.IDE = CAN_ID_STD;     //设置ID类型
	 TxMessage.StdId = 0x01;        //设置ID号
    TxMessage.RTR = CAN_RTR_DATA;   //设置传送数据帧
	 TxMessage.DLC = 4;              //设置数据长度
	if (HAL_CAN_AddTxMessage(&hcan1, &TxMessage, data, &TxMailbox) != HAL_OK)
		{
        Error_Handler();
     }		
}
void GET_encoder2(void)
{
    uint32_t TxMailbox;
    uint8_t data[4] = {0x04,0x02,0x01,0x00};
    TxMessage.IDE = CAN_ID_STD;     //设置ID类型
	TxMessage.StdId = 0x01;        //设置ID号
    TxMessage.RTR = CAN_RTR_DATA;   //设置传送数据帧
	TxMessage.DLC = 4;              //设置数据长度
	if (HAL_CAN_AddTxMessage(&hcan1, &TxMessage, data, &TxMailbox) != HAL_OK)
		{
        Error_Handler();
     }			
}
void CAN1_Send_Test(void)
{
    uint32_t TxMailbox;
    uint8_t data[4] = {0x04,0x01,0x01,0x00};
    TxMessage.IDE = CAN_ID_STD;     //设置ID类型
	 TxMessage.StdId = 0x01;        //设置ID号
    TxMessage.RTR = CAN_RTR_DATA;   //设置传送数据帧
	 TxMessage.DLC = 4;              //设置数据长度
	if (HAL_CAN_AddTxMessage(&hcan1, &TxMessage, data, &TxMailbox) != HAL_OK)
		{
        Error_Handler();
     }	
	else{ printf("HAL_CAN_AddTxMessage1 is HAL_OK\r\n"); }	
}

void CAN1_Send(uint8_t* cdata)
{
    uint32_t TxMailbox;
    TxMessage.IDE = CAN_ID_STD;     //设置ID类型
	TxMessage.StdId = 0x122;        //设置ID号
    TxMessage.RTR = CAN_RTR_DATA;   //设置传送数据帧
	TxMessage.DLC = 8;              //设置数据长度	
	if (HAL_CAN_AddTxMessage(&hcan1, &TxMessage, cdata, &TxMailbox) != HAL_OK)
	{
        Error_Handler();
    }		
}

void CAN2_Send_Test(void)
{
    uint32_t TxMailbox;
    uint8_t data[4] = {0x04,0x01,0x01,0x00};
    TxMessage.IDE = CAN_ID_STD;     //设置ID类型
	 TxMessage.StdId = 0x01;        //设置ID号
    TxMessage.RTR = CAN_RTR_DATA;   //设置传送数据帧
	 TxMessage.DLC = 4;              //设置数据长度
	if (HAL_CAN_AddTxMessage(&hcan2, &TxMessage, data, &TxMailbox) != HAL_OK)
		{
        Error_Handler();
     }	
	else{ printf("HAL_CAN_AddTxMessage2 is HAL_OK\r\n"); }	
}

void CAN2_Send(uint8_t* cdata)
{
    uint32_t TxMailbox;
    TxMessage.IDE = CAN_ID_STD;     //设置ID类型
	TxMessage.StdId = 0x111;        //设置ID号
    TxMessage.RTR = CAN_RTR_DATA;   //设置传送数据帧
	TxMessage.DLC = 8;              //设置数据长度	
	if (HAL_CAN_AddTxMessage(&hcan2, &TxMessage, cdata, &TxMailbox) != HAL_OK)
	{
        Error_Handler();
    }		
}
/*******************
CAN启动函数
*******************/
void CAN_Start_Init(void)
{
	if (HAL_CAN_Start(&hcan1) != HAL_OK) 
    {
        Error_Handler();
     }
	else{ printf("HAL_CAN1_Star1 is HAL_OK\r\n"); }
    
    if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING) !=  HAL_OK) {
        Error_Handler();
    }
	else{ printf("HAL_CAN1_ActivateNotification is HAL_OK\r\n"); }
	
  if (HAL_CAN_Start(&hcan2) != HAL_OK) 
    {
        Error_Handler();
     }
	else{ printf("HAL_CAN2_Start is HAL_OK\r\n"); }
    
    if (HAL_CAN_ActivateNotification(&hcan2, CAN_IT_RX_FIFO0_MSG_PENDING) !=  HAL_OK) {
        Error_Handler();
    }
	else{ printf("HAL_CAN2_ActivateNotification is HAL_OK\r\n"); }
}

/*******************
中断接受
*******************/
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
    uint8_t  data[8];
    HAL_StatusTypeDef	status;
    status = HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &RxMessage, data);
//    if (HAL_OK == status)
//	{    
//		printf("--->Data Receieve!\r\n");
//		printf("RxMessage.StdId is %#x\r\n",  RxMessage.StdId);
//		printf("data[0] is 0x%02x\r\n", data[0]);
//		printf("data[1] is 0x%02x\r\n", data[1]);
//		printf("data[2] is 0x%02x\r\n", data[2]);
//		printf("data[3] is 0x%02x\r\n", data[3]);
//		printf("data[4] is 0x%02x\r\n", data[4]);
//		printf("data[5] is 0x%02x\r\n", data[5]);
//		printf("data[6] is 0x%02x\r\n", data[6]);
//		printf("data[7] is 0x%02x\r\n", data[7]);		
//		printf("<---\r\n"); 
//    }
	if (hcan->Instance == hcan1.Instance)//数据来自编码器
	{
		//来自编码器1的回信
		if (data[1] == 0x01)
		{
			if (data[0] == 0x07 && data[2] == 0x01) //此时为查询当前位置的返回值
			{
				encoder1 = data[3] + data[4]*256 + data[5]*65536;
				printf("编码器1的当前位置为:%d \r\n",encoder1); 
			}
			else									//此时为其他命令的返回数据
			{
				switch (data[2])
				{
					case 0x02:	//此时为返回新设置的编码器ID
						break;
					case 0x03:	//此时为返回新设置的波特率
						break;		
					case 0x04:	//此时为返回新设置的编码器运行模式
						break;	
					case 0x05:	//此时为返回新设置的编码器自动回传时间
						break;	
					case 0x06:	//当前位置设为零点
						break;					
					case 0x07:	//此时为返回新设置的编码器旋转方向
						break;	
					case 0x0A:	//此时为返回角速度值
						break;			
					case 0x0B:	//此时为返回新设置的编码器角速度采样值
						break;		
					case 0x0C:	//此时为返回新设置的编码器当前圈数
						break;	
					case 0x0D:	//此时为返回新设置的编码器当前位置值
						break;		
					case 0x0F:	//此时为返回新设置的编码器当前圈数值
						break;	
					default:
						break;
				}
			}
		}
		
		//来自编码器2的回信
		else if (data[1] == 0x02)
		{
			if (data[0] == 0x07 && data[2] == 0x01) //此时为查询当前位置的返回值
			{
				encoder2 = data[3] + data[4]*256 + data[5]*65536;
				printf("编码器2的当前位置为:%d \r\n",encoder2); 
			}	
			else									//此时为其他命令的返回数据
			{
				switch (data[2])
				{
					case 0x02:	//此时为返回新设置的编码器ID
						break;
					case 0x03:	//此时为返回新设置的波特率
						break;		
					case 0x04:	//此时为返回新设置的编码器运行模式
						break;	
					case 0x05:	//此时为返回新设置的编码器自动回传时间
						break;	
					case 0x06:	//当前位置设为零点
						break;					
					case 0x07:	//此时为返回新设置的编码器旋转方向
						break;	
					case 0x0A:	//此时为返回角速度值
						break;			
					case 0x0B:	//此时为返回新设置的编码器角速度采样值
						break;		
					case 0x0C:	//此时为返回新设置的编码器当前圈数
						break;	
					case 0x0D:	//此时为返回新设置的编码器当前位置值
						break;		
					case 0x0F:	//此时为返回新设置的编码器当前圈数值
						break;	
					default:
						break;
				}
			}
		}
	}
	
	else if (hcan->Instance == hcan2.Instance)//数据来自上位机
	{
		if (HAL_OK == status)
		{    
			if (data[0] == 0xba && data[7] == 0xab)
			{
				switch (data[2])					
				{
					case 0x01://数据来自上位机,得到目标位置值
						if (run_in_can == 1)
						{
							X_tar = data[3]*128*128*128 + data[4]*128*128 + data[5]*128 + data[6];
							printf("目标位置为:%d mm\r\n",X_tar); 
							now_station = 3 ;
						}
						break;
						
					case 0x02://数据来自上位机,控制输出端口
						GPIO_OUT_contral(data[5] , data[6]);
						break;
					
					case 0x03://数据来自上位机,选择CAN作为控制器
						now_station = 2 ;
						printf("已选取CAN上位机为控制器\r\n"); 
						break;
					
					case 0x04://数据来自上位机,停止信号
						now_station = 0 ;
						printf("停止信号发起\r\n"); 	
						break;
					
					case 0x05://数据来自上位机,进行电机正反转测试
						if (run_in_can == 1)
						{
							now_station = 5 ;
							printf("进行电机正反转测试\r\n"); 							
						}
						break;	
						
					default:
						break;
				}
			}
		}	
	}
}

/* USER CODE END 1 */

作者:Tony0925

物联沃分享整理
物联沃-IOTWORD物联网 » STM32-HAL库教程:CAN通讯轮询发送与中断接收详解

发表评论