深度学习系列38:Dalle2模型

1. 快速入门

1.1 diffusion模型

diffusion模型从原始图片出发增加噪声,然后再尝试重建

另外还用GLIDE模型来进行图像解码,与普通diffusion模型不同的是,它还加入了text embedding和clip embedding:

1.2 Dalle2模型

Dalle2模型基于CLIP模型,流程如下。其中Prior采用diffusion模型

为啥要这么设计呢?论文说是尝试出来的。
加入把“a hedgedog using a calculator”直接输入decoder,得到下图:

加上text embedding的话是这样:

加上diffusion模型和image embedding,得到下图:

Delle2生成的图像是否ok,是人工打标的,维度包括caption similarity、photorealism、sample diversity。

1.3 多样性

使用下面的模型生成多种图片:

2. 训练代码

安装:pip install dalle2-pytorch

2.1 一般流程

首先要训练clip:

import torch
from dalle2_pytorch import CLIP
clip = CLIP().cuda()
loss = clip(text,images,return_loss = True)
loss.backward()

然后训练解码器(基于CLIP的image embedding),这里使用一个Unet来作为解码器:

import torch
from dalle2_pytorch import Unet, Decoder, CLIP
unet = Unet().cuda()
decoder = Decoder(unet = unet,clip = clip).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
loss = decoder(images)
loss.backward()

最后训练prior(基于CLIP的text embedding生成image embedding),这里使用Diffusion模型:

import torch
from dalle2_pytorch import DiffusionPriorNetwork, DiffusionPrior, CLIP
prior_network = DiffusionPriorNetwork().cuda()
diffusion_prior = DiffusionPrior(net = prior_network,clip = clip).cuda()
loss = diffusion_prior(text, images)
loss.backward()

2.2 生成图片

需要用到训练好的DiffusionPrior和Decoder:

from dalle2_pytorch import DALLE2

dalle2 = DALLE2(
    prior = diffusion_prior,
    decoder = decoder
)

texts = ['glistening morning dew on a flower petal']
images = dalle2(texts) # (1, 3, 256, 256)

3. 网上资源

3.1 使用现有CLIP

使用OpenAIClipAdapter类,并将其传给diffusion_prior和decoder进行训练:

import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter

# openai pretrained clip - defaults to ViT-B/32

clip = OpenAIClipAdapter()

# mock data

text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()

# prior networks (with transformer)

prior_network = DiffusionPriorNetwork(
    dim = 512,
    depth = 6,
    dim_head = 64,
    heads = 8
).cuda()

diffusion_prior = DiffusionPrior(
    net = prior_network,
    clip = clip,
    timesteps = 100,
    cond_drop_prob = 0.2
).cuda()

loss = diffusion_prior(text, images)
loss.backward()

# do above for many steps ...

# decoder (with unet)

unet1 = Unet(
    dim = 128,
    image_embed_dim = 512,
    cond_dim = 128,
    channels = 3,
    dim_mults=(1, 2, 4, 8)
).cuda()

unet2 = Unet(
    dim = 16,
    image_embed_dim = 512,
    cond_dim = 128,
    channels = 3,
    dim_mults = (1, 2, 4, 8, 16)
).cuda()

decoder = Decoder(
    unet = (unet1, unet2),
    image_sizes = (128, 256),
    clip = clip,
    timesteps = 100,
    image_cond_drop_prob = 0.1,
    text_cond_drop_prob = 0.5,
    condition_on_text_encodings = False  # set this to True if you wish to condition on text during training and sampling
).cuda()

for unet_number in (1, 2):
    loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
    loss.backward()

# do above for many steps

dalle2 = DALLE2(
    prior = diffusion_prior,
    decoder = decoder
)

images = dalle2(
    ['a butterfly trying to escape a tornado'],
    cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)

# save your image (in this example, of size 256x256)

3.2 使用现成的prior模型

参考这里:https://huggingface.co/zenglishuci/conditioned-prior,这里有各种尺寸的模型。
下面是加载prior模型的代码

def load_diffusion_model(dprior_path, device, clip_choice):

    loaded_obj = torch.load(str(dprior_path), map_location='cpu')
    
    if clip_choice == "ViT-B/32":
        dim = 512
    else:
        dim = 768

    prior_network = DiffusionPriorNetwork(
        dim=dim,
        depth=12,
        dim_head=64,
        heads=12,
        normformer=True
    ).to(device)

    diffusion_prior = DiffusionPrior(
        net=prior_network,
        clip=OpenAIClipAdapter(clip_choice),
        image_embed_dim=dim,
        timesteps=1000,
        cond_drop_prob=0.1,
        loss_type="l2",
    ).to(device)


    diffusion_prior.load_state_dict(loaded_obj["model"], strict=True)

    diffusion_prior = DiffusionPriorTrainer(
                      diffusion_prior = diffusion_prior,
                      lr = 1.1e-4,
                      wd = 6.02e-2,
                      max_grad_norm = 0.5,
                      amp = False,
                  ).to(device)

    diffusion_prior.optimizer.load_state_dict(loaded_obj['optimizer'])
    diffusion_prior.scaler.load_state_dict(loaded_obj['scaler'])

    return diffusion_prior

来源:IE06

物联沃分享整理
物联沃-IOTWORD物联网 » 深度学习系列38:Dalle2模型

发表评论