Python数据可视化三部曲之 Seaborn 从上手到上头


Python数据可视化三部曲之 Seaborn 从上手到上头

文章目录

  • 1. 安装 seaborn
  • 2.准备数据
  • 3.背景与边框
  • 3.1 设置背景风格
  • 3.3 其他
  • 3.2 边框控制
  • 4. 绘制 散点图
  • 5. 绘制 折线图
  • 5.1 使用 replot()方法
  • 5.2 使用 lineplot()方法
  • 6. 绘制直方图 displot()
  • 7. 绘制条形图 barplot()
  • 8. 绘制线性回归模型
  • 9. 绘制 核密度图 kdeplot()
  • 9.1 一般核密度图
  • 9.2 边际核密度图
  • 10. 绘制 箱线图 boxplot()
  • 11. 绘制 提琴图 violinplot()
  • 12. 绘制 热力图 heatmap()

  •       ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ
                     请添加图片描述请添加图片描述请添加图片描述
        ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ


    大家好,我是侯小啾!

    本期blog将和大家分享,python基于Seaborn库的一系列绘图操作。
    Seaborn库是python中基于matplotlib库的可视化工具库,通过sns我们可以更方便地绘制出更美观的图表。


    1. 安装 seaborn

    安装:

    pip install seaborn

    导入:

    import seaborn as sns


    2.准备数据

    正式开始之前我们先用如下代码准备一组数据,方便展示使用。

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    pd.set_option('display.unicode.east_asian_width', True)
    
    df1 = pd.DataFrame(
        {'数据序号': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
         '厂商编号': ['001', '001', '001', '002', '002', '002', '003', '003', '003', '004', '004', '004'],
         '产品类型': ['AAA', 'BBB', 'CCC', 'AAA', 'BBB', 'CCC', 'AAA', 'BBB', 'CCC', 'AAA', 'BBB', 'CCC'],
         'A属性值': [40, 70, 60, 75, 90, 82, 73, 99, 125, 105, 137, 120],
         'B属性值': [24, 36, 52, 32, 49, 68, 77, 90, 74, 88, 98, 99],
         'C属性值': [30, 36, 55, 46, 68, 77, 72, 89, 99, 90, 115, 101]
        }
    )
    print(df1)
    

    生成一组数据如下:

            


    3.背景与边框


    3.1 设置背景风格

    设置风格使用的是sns.set_style()方法,且这里内置的风格,是用背景色表示名字的,但是实际内容不限于背景色。

    sns.set_style()


    可以选择的背景风格有:

  • whitegrid  白色网格
  • dark  灰色背景
  • white  白色背景
  • ticks  四周带刻度线的白色背景

  • sns.set()

    sns.set_style(“darkgrid”)

    sns.set_style(“whitegrid”)

    sns.set_style(“dark”)

    sns.set_style(“white”)

    sns.set_style(“ticks”)

      其中sns.set()表示使用自定义样式,如果没有传入参数,则默认表示灰色网格背景风格。如果没有set()也没有set_style(),则为白色背景。

      一个可能的bug:使用relplot()方法绘制出的图像,"ticks"样式无效。


    3.3 其他

      seaborn库是基于matplotlib库而封装的,其封装好的风格可以更加方便我们的绘图工作。而matplotlib库常用的语句,在使用seaborn库时也依然有效。

      关于设置其他风格相关的属性,如字体,这里有一个细节需要注意的是,这些代码必须写在sns.set_style()的后方才有效。如将字体设置为黑体(避免中文乱码)的代码:

    plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

      如果在其后方设置风格,则设置好的字体会设置的风格覆盖,从而产生警告。其他属性也同理。


    3.2 边框控制

    sns.despine()方法

    # 移除顶部和右部边框,只保留左边框和下边框
    sns.despine()
    
    # 使两个坐标轴相隔一段距离(以10长度为例)
    sns.despine(offet=10,trim=True)
    
    # 移除左边框
    sns.despine(left=True)
    
    # 移除指定边框 (以只保留底部边框为例)
    sns.despine(fig=None, ax=None, top=True, right=True, left=True, bottom=False, offset=None, trim=False)
    

    4. 绘制 散点图

    使用seaborn库 绘制散点图,可以使用replot()方法,也可以使用scatter()方法。

    replot方法的参数kind默认是’scatter’,表示绘制散点图。
    hue参数表示 在该一维度上,用颜色区分

    ①对A属性值和数据序号绘制散点图,红色散点,灰色网格,保留左、下边框

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
    sns.relplot(x=‘数据序号’, y=‘A属性值’, data=df1, color=‘red’)
    plt.show()

          


    ②对A属性值和数据序号绘制散点图,散点根据产品类型的不同显示不同的颜色,
    白色网格,左、下边框:

    sns.set_style(‘whitegrid’)
    plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
    sns.relplot(x=‘数据序号’, y=‘A属性值’, hue=‘产品类型’, data=df1)
    plt.show()

           


    ③将A属性、B属性、C属性三个字段的值用不同的样式绘制在同一张图上(绘制散点图),x轴数据是[0,2,4,6,8…]
    ticks风格(四个方向的框线都要),字体使用楷体

    sns.set_style(‘ticks’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    df2 = df1.copy()
    df2.index = list(range(0, len(df2)*2, 2))
    dfs = [df2[‘A属性值’], df2[‘B属性值’], df2[‘C属性值’]]
    sns.scatterplot(data=dfs)
    plt.show()

           


    5. 绘制 折线图

    使用seaborn库绘制折线图, 可以使用replot()方法,也可以使用lineplot()方法。

    5.1 使用 replot()方法

    sns.replot()默认绘制的是散点图,绘制折线图只需吧参数kind改为"line"。

    需求:绘制A属性值与数据序号的折线图,
    灰色网格,全局字体为楷体;并调整标题、两轴标签 的字体大小,
    以及坐标系与画布边缘的距离(设置该距离是因为字体没有显示完全):

    sns.set(rc={‘font.sans-serif’: “STKAITI”})
    sns.relplot(x=‘数据序号’, y=‘A属性值’, data=df1, color=‘purple’, kind=‘line’)
    plt.title(“绘制折线图”, fontsize=18)
    plt.xlabel(‘num’, fontsize=18)
    plt.ylabel(‘A属性值’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

                  



    需求:绘制不同产品类型的A属性折线(三条线一张图),whitegrid风格,字体楷体。

    sns.set_style(“whitegrid”)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.relplot(x=‘数据序号’, y=‘A属性值’, hue=‘产品类型’, data=df1, kind=‘line’)
    plt.title(“绘制折线图”, fontsize=18)
    plt.xlabel(‘num’, fontsize=18)
    plt.ylabel(‘A属性值’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

             



      需求:将A属性、B属性、C属性三个字段的值用不同的样式绘制在同一张图上(绘制折线图),x轴数据是[0,2,4,6,8…]
      darkgrid风格(四个方向的框线都要),字体使用楷体,并加入x轴标签,y轴标签和标题。边缘距离合适。

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    df2 = df1.copy()
    df2.index = list(range(0, len(df2)*2, 2))
    dfs = [df2[‘A属性值’], df2[‘B属性值’], df2[‘C属性值’]]
    sns.relplot(data=dfs, kind=“line”)
    plt.title(“绘制折线图”, fontsize=18)
    plt.xlabel(‘num’, fontsize=18)
    plt.ylabel(‘A属性值’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

              



      多重子图

    横向多重子图 col

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.relplot(data=df1, x=“A属性值”, y=“B属性值”, kind=“line”, col=“厂商编号”)
    plt.subplots_adjust(left=0.05, right=0.95, bottom=0.1, top=0.9)
    plt.show()

    纵向多重子图 row

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.relplot(data=df1, x=“A属性值”, y=“B属性值”, kind=“line”, row=“厂商编号”)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.95)
    plt.show()

                 


    5.2 使用 lineplot()方法

    使用lineplot()方法绘制折线图,其他细节基本同上,示例代码如下:

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.lineplot(x=‘数据序号’, y=‘A属性值’, data=df1, color=‘purple’)
    plt.title(“绘制折线图”, fontsize=18)
    plt.xlabel(‘num’, fontsize=18)
    plt.ylabel(‘A属性值’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

            


    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    df2 = df1.copy()
    df2.index = list(range(0, len(df2)*2, 2))
    dfs = [df2[‘A属性值’], df2[‘B属性值’], df2[‘C属性值’]]
    sns.lineplot(data=dfs)
    plt.title(“绘制折线图”, fontsize=18)
    plt.xlabel(‘num’, fontsize=18)
    plt.ylabel(‘A属性值’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

            


    6. 绘制直方图 displot()

    绘制直方图使用的是sns.displot()方法

    bins=6 表示 分成六个区间绘图
    rug=True 表示在x轴上显示观测的小细条
    kde=True表示显示核密度曲线

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.displot(data=df1[[‘C属性值’]], bins=6, rug=True, kde=True)
    plt.title(“直方图”, fontsize=18)
    plt.xlabel(‘C属性值’, fontsize=18)
    plt.ylabel(‘数量’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

            


    随机生成300个正态分布数据,并绘制直方图,显示核密度曲线

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    np.random.seed(13)
    Y = np.random.randn(300)
    sns.displot(Y, bins=9, rug=True, kde=True)
    plt.title(“直方图”, fontsize=18)
    plt.xlabel(‘C属性值’, fontsize=18)
    plt.ylabel(‘数量’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.1, top=0.9)
    plt.show()

                 


    7. 绘制条形图 barplot()

    绘制条形图使用的是barplot()方法

    以产品类型 字段数据作为x轴数据,A属性值数据作为y轴数据。按照厂商编号字段的不同进行分类。
    具体如下:

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.barplot(x=“产品类型”, y=‘A属性值’, hue=“厂商编号”, data=df1)
    plt.title(“条形图”, fontsize=18)
    plt.xlabel(‘产品类型’, fontsize=18)
    plt.ylabel(‘数量’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.15, top=0.9)
    plt.show()

             


    8. 绘制线性回归模型

    绘制线性回归模型使用的是lmplot()方法。
    主要的参数为x, y, data。分别表示x轴数据、y轴数据和数据集数据。

    除此之外,同上述所讲,还可以通过hue指定分类的变量;
    通过col指定列分类变量,以绘制 横向多重子图;
    通过row指定行分类变量,以绘制 纵向多重子图;
    通过col_wrap控制每行子图的数量;
    通过size可以控制子图的高度;
    通过markers可以控制点的形状。

    下边对 X属性值 和 Y属性值 做线性回归,代码如下:

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.lmplot(x=“A属性值”, y=‘B属性值’, data=df1)
    plt.title(“线性回归模型”, fontsize=18)
    plt.xlabel(‘A属性值’, fontsize=18)
    plt.ylabel(‘B属性值’, fontsize=16)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.15, top=0.9)
    plt.show()

               


    9. 绘制 核密度图 kdeplot()

    9.1 一般核密度图

    绘制和密度图,可以让我们更直观地看出样本数据的分布特征。绘制核密度图使用的方法是kdeplot()方法。

    对A属性值和B属性值绘制核密度图,
    将shade设置为True可以显示包围的阴影,否则只有线条。

    sns.set_style(‘darkgrid’)
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.kdeplot(df1[“A属性值”], shade=True, data=df1, color=‘r’)
    sns.kdeplot(df1[“B属性值”], shade=True, data=df1, color=‘g’)
    plt.title(“核密度图”, fontsize=18)
    plt.xlabel(‘Value’, fontsize=18)
    plt.subplots_adjust(left=0.15, right=0.9, bottom=0.15, top=0.9)
    plt.show()

             


    9.2 边际核密度图

    绘制边际核密度图时使用的是sns.jointplot()方法。参数kind应为"kde"。使用该方法时,默认使用的是dark样式。且不建议手动添加其他样式,否则可能使图像无法正常显示。

    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.jointplot(x=df1[“A属性值”], y=df1[“B属性值”], kind=“kde”, space=0)
    plt.show()

            


    10. 绘制 箱线图 boxplot()

    绘制箱线图使用到的是boxplot()方法。
    基本的参数有x, y, data。

    除此之外 还可以有
    hue 表示分类字段
    width 可以调节箱体的宽度
    notch 表示中间箱体是否显示缺口,默认False不显示。

    鉴于前边的数据数据量不太够不便展示,这里再生成一组数据:

    np.random.seed(13)
    Y = np.random.randint(20, 150, 360)
    df2 = pd.DataFrame(
    {‘厂商编号’: [‘001’, ‘001’, ‘001’, ‘002’, ‘002’, ‘002’, ‘003’, ‘003’, ‘003’, ‘004’, ‘004’, ‘004’] * 30,
    ‘产品类型’: [‘AAA’, ‘BBB’, ‘CCC’, ‘AAA’, ‘BBB’, ‘CCC’, ‘AAA’, ‘BBB’, ‘CCC’, ‘AAA’, ‘BBB’, ‘CCC’] * 30,
    ‘XXX属性值’: Y
    }
    )


    生成好后,开始绘制箱线图:

    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.boxplot(x=‘产品类型’, y=‘XXX属性值’, data=df2)
    plt.show()

            


    交换x、y轴数据后:

    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.boxplot(y=‘产品类型’, x=‘XXX属性值’, data=df2)
    plt.show()

    可以看到箱线图的方向也随之改变

            


    将厂商编号作为分类字段:

    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.boxplot(x=‘产品类型’, y=‘XXX属性值’, data=df2, hue=“厂商编号”)
    plt.show()

            


    11. 绘制 提琴图 violinplot()

    提琴图结合了箱线图和核密度图的特征,用于展示数据的分布形状。
    使用violinplot()方法绘制提琴图。

    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.violinplot(x=‘产品类型’, y=‘XXX属性值’, data=df2)
    plt.show()

            


    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.violinplot(x=‘XXX属性值’, y=‘产品类型’, data=df2)
    plt.show()

            


    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]
    sns.violinplot(x=‘产品类型’, y=‘XXX属性值’, data=df2, hue=“厂商编号”)
    plt.show()

            


    12. 绘制 热力图 heatmap()

    以双色球中奖号码数据为例绘制热力图,这里数据采用随机数生成。

    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

    sns.set()
    plt.figure(figsize=(6,6))
    plt.rcParams[‘font.sans-serif’] = [‘STKAITI’]

    s1 = np.random.randint(0, 200, 33)
    s2 = np.random.randint(0, 200, 33)
    s3 = np.random.randint(0, 200, 33)
    s4 = np.random.randint(0, 200, 33)
    s5 = np.random.randint(0, 200, 33)
    s6 = np.random.randint(0, 200, 33)
    s7 = np.random.randint(0, 200, 33)
    data = pd.DataFrame(
    {‘一’: s1,
    ‘二’: s2,
    ‘三’: s3,
    ‘四’:s4,
    ‘五’:s5,
    ‘六’:s6,
    ‘七’:s7
    }
    )

    plt.title(‘双色球热力图’)
    sns.heatmap(data, annot=True, fmt=‘d’, lw=0.5)
    plt.xlabel(‘中奖号码位数’)
    plt.ylabel(‘双色球数字’)
    x = [‘第1位’, ‘第2位’, ‘第3位’, ‘第4位’, ‘第5位’, ‘第6位’, ‘第7位’]
    plt.xticks(range(0, 7, 1), x, ha=‘left’)
    plt.show()

            


    本次分享就到这里,小啾感谢您的关注与支持!
    🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ

    来源:侯小啾

    物联沃分享整理
    物联沃-IOTWORD物联网 » Python数据可视化三部曲之 Seaborn 从上手到上头

    发表评论