PyTorch搭建LSTM实现时间序列预测(负荷预测)

目录

  • I. 前言
  • II. 数据处理
  • III. LSTM模型
  • IV. 训练
  • V. 测试
  • VI. 源码及数据
  • I. 前言

    在上一篇文章深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中,我详细地解释了如何利用PyTorch来搭建一个LSTM模型,本篇文章的主要目的是搭建一个LSTM模型用于时间序列预测。

    系列文章:

    1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
    2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
    3. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
    4. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
    5. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
    6. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
    7. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
    8. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
    9. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
    10. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
    11. PyTorch-LSTM时间序列预测中如何预测真正的未来值
    12. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
    13. PyTorch搭建ANN实现时间序列预测(风速预测)
    14. PyTorch搭建CNN实现时间序列预测(风速预测)
    15. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
    16. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
    17. 时间序列预测系列文章总结(代码使用方法)

    II. 数据处理

    数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。

    本篇文章暂时不考虑其它变量,只考虑用历史负荷来预测未来负荷。本文中,我们根据前24个时刻的负荷下一时刻的负荷。有关多变量预测请参考:PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)

    def load_data(file_name):
        df = pd.read_csv('data/new_data/' + file_name, encoding='gbk')
        columns = df.columns
        df.fillna(df.mean(), inplace=True)
        return df
    
    
    class MyDataset(Dataset):
        def __init__(self, data):
            self.data = data
    
        def __getitem__(self, item):
            return self.data[item]
    
        def __len__(self):
            return len(self.data)
        
        
    def nn_seq_us(B):
        print('data processing...')
        dataset = load_data()
        # split
        train = dataset[:int(len(dataset) * 0.6)]
        val = dataset[int(len(dataset) * 0.6):int(len(dataset) * 0.8)]
        test = dataset[int(len(dataset) * 0.8):len(dataset)]
        m, n = np.max(train[train.columns[1]]), np.min(train[train.columns[1]])
    
        def process(data, batch_size, shuffle):
            load = data[data.columns[1]]
            load = load.tolist()
            data = data.values.tolist()
            load = (load - n) / (m - n)
            seq = []
            for i in range(len(data) - 24):
                train_seq = []
                train_label = []
                for j in range(i, i + 24):
                    x = [load[j]]
                    train_seq.append(x)
                # for c in range(2, 8):
                #     train_seq.append(data[i + 24][c])
                train_label.append(load[i + 24])
                train_seq = torch.FloatTensor(train_seq)
                train_label = torch.FloatTensor(train_label).view(-1)
                seq.append((train_seq, train_label))
    
            # print(seq[-1])
            seq = MyDataset(seq)
            seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=shuffle, num_workers=0, drop_last=True)
    
            return seq
    
        Dtr = process(train, B, True)
        Val = process(val, B, True)
        Dte = process(test, B, False)
    
        return Dtr, Val, Dte, m, n
    

    上面代码用了DataLoader来对原始数据进行处理,最终得到了batch_size=B的数据集Dtr、Val以及Dte,Dtr为训练集,Val为验证集,Dte为测试集。

    III. LSTM模型

    这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:

    class LSTM(nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
            super().__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.output_size = output_size
            self.num_directions = 1 # 单向LSTM
            self.batch_size = batch_size
            self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
            self.linear = nn.Linear(self.hidden_size, self.output_size)
    
        def forward(self, input_seq):
            batch_size, seq_len = input_seq[0], input_seq[1]
            h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
            c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
            # output(batch_size, seq_len, num_directions * hidden_size)
            output, _ = self.lstm(input_seq, (h_0, c_0))
            pred = self.linear(output)
            pred = pred[:, -1, :]
            return pred
    

    IV. 训练

    def train(args, Dtr, Val, path):
        input_size, hidden_size, num_layers = args.input_size, args.hidden_size, args.num_layers
        output_size = args.output_size
        if args.bidirectional:
            model = BiLSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
        else:
            model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    
        loss_function = nn.MSELoss().to(device)
        if args.optimizer == 'adam':
            optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
                                         weight_decay=args.weight_decay)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                        momentum=0.9, weight_decay=args.weight_decay)
        scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
        # training
        min_epochs = 10
        best_model = None
        min_val_loss = 5
        for epoch in tqdm(range(args.epochs)):
            train_loss = []
            for (seq, label) in Dtr:
                seq = seq.to(device)
                label = label.to(device)
                y_pred = model(seq)
                loss = loss_function(y_pred, label)
                train_loss.append(loss.item())
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
    
            scheduler.step()
            # validation
            val_loss = get_val_loss(args, model, Val)
            if epoch > min_epochs and val_loss < min_val_loss:
                min_val_loss = val_loss
                best_model = copy.deepcopy(model)
    
            print('epoch {:03d} train_loss {:.8f} val_loss {:.8f}'.format(epoch, np.mean(train_loss), val_loss))
            model.train()
    
        state = {'models': best_model.state_dict()}
        torch.save(state, path)
    

    保存训练过程中在验证集上表现最好的模型。

    V. 测试

    def test(args, Dte, path, m, n):
        pred = []
        y = []
        print('loading models...')
        input_size, hidden_size, num_layers = args.input_size, args.hidden_size, args.num_layers
        output_size = args.output_size
        if args.bidirectional:
            model = BiLSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
        else:
            model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
        # models = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
        model.load_state_dict(torch.load(path)['models'])
        model.eval()
        print('predicting...')
        for (seq, target) in tqdm(Dte):
            target = list(chain.from_iterable(target.data.tolist()))
            y.extend(target)
            seq = seq.to(device)
            with torch.no_grad():
                y_pred = model(seq)
                y_pred = list(chain.from_iterable(y_pred.data.tolist()))
                pred.extend(y_pred)
    
        y, pred = np.array(y), np.array(pred)
        y = (m - n) * y + n
        pred = (m - n) * pred + n
        print('mape:', get_mape(y, pred))
        # plot
        x = [i for i in range(1, 151)]
        x_smooth = np.linspace(np.min(x), np.max(x), 900)
        y_smooth = make_interp_spline(x, y[150:300])(x_smooth)
        plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=0.75, label='true')
    
        y_smooth = make_interp_spline(x, pred[150:300])(x_smooth)
        plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=0.75, label='pred')
        plt.grid(axis='y')
        plt.legend()
        plt.show()
    

    简单训练30轮,MAPE为5.77%:

    VI. 源码及数据

    暂无。

    来源:Cyril_KI

    物联沃分享整理
    物联沃-IOTWORD物联网 » PyTorch搭建LSTM实现时间序列预测(负荷预测)

    发表评论