stm32mp15x 之 M4 使用 canfd

目录

  • 配置
  • 添加
  • 参考
  • 在使用 stm32mp15x 系列时,M4 有不少的坑,这里简单聊聊使用 canfd 时遇到的一些问题。

    配置

    这里使用 PLL4R 为 100M,用于 CANFD 的时钟

    canfd 速率配置成 1M ,5M,其中数据传输速率为 5M。

    接收采用 RxFifo0,发送采用 FIFO 模式,发送和接收数据长度都配置成 64字节,tx、rx 深度都配置成 15。

    配置 FDCAN2 中断 0 就可以。

    配置生成如下:

    void MX_FDCAN2_Init(void)
    {
    
      hfdcan2.Instance = FDCAN2;
      hfdcan2.Init.FrameFormat = FDCAN_FRAME_FD_BRS;
      hfdcan2.Init.Mode = FDCAN_MODE_NORMAL;
      hfdcan2.Init.AutoRetransmission = ENABLE;
      hfdcan2.Init.TransmitPause = DISABLE;
      hfdcan2.Init.ProtocolException = DISABLE;
      hfdcan2.Init.NominalPrescaler = 2;
      hfdcan2.Init.NominalSyncJumpWidth = 16;
      hfdcan2.Init.NominalTimeSeg1 = 33;
      hfdcan2.Init.NominalTimeSeg2 = 16;
      hfdcan2.Init.DataPrescaler = 1;
      hfdcan2.Init.DataSyncJumpWidth = 4;
      hfdcan2.Init.DataTimeSeg1 = 15;
      hfdcan2.Init.DataTimeSeg2 = 4;
      hfdcan2.Init.MessageRAMOffset = 0;
      hfdcan2.Init.StdFiltersNbr = 1;
      hfdcan2.Init.ExtFiltersNbr = 0;
      hfdcan2.Init.RxFifo0ElmtsNbr = 15;
      hfdcan2.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;
      hfdcan2.Init.RxFifo1ElmtsNbr = 0;
      hfdcan2.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;
      hfdcan2.Init.RxBuffersNbr = 0;
      hfdcan2.Init.RxBufferSize = FDCAN_DATA_BYTES_8;
      hfdcan2.Init.TxEventsNbr = 0;
      hfdcan2.Init.TxBuffersNbr = 0;
      hfdcan2.Init.TxFifoQueueElmtsNbr = 15;
      hfdcan2.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
      hfdcan2.Init.TxElmtSize = FDCAN_DATA_BYTES_64;
      if (HAL_FDCAN_Init(&hfdcan2) != HAL_OK)
      {
        Error_Handler();
      }
    
    }
    
    void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* fdcanHandle)
    {
    
      GPIO_InitTypeDef GPIO_InitStruct = {0};
      RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
      if(fdcanHandle->Instance==FDCAN2)
      {
      /* USER CODE BEGIN FDCAN2_MspInit 0 */
    
      /* USER CODE END FDCAN2_MspInit 0 */
      if(IS_ENGINEERING_BOOT_MODE())
      {
      /** Initializes the peripherals clock
      */
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
        PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL4_R;
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
        {
          Error_Handler();
        }
    
      }
    
        /* FDCAN2 clock enable */
        __HAL_RCC_FDCAN_CLK_ENABLE();
    
        __HAL_RCC_GPIOB_CLK_ENABLE();
        /**FDCAN2 GPIO Configuration
        PB12     ------> FDCAN2_RX
        PB13     ------> FDCAN2_TX
        */
        GPIO_InitStruct.Pin = GPIO_PIN_12;
        GPIO_InitStruct.Mode = GPIO_MODE_AF;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN2;
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
    
        GPIO_InitStruct.Pin = GPIO_PIN_13;
        GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
        GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN2;
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
    
        /* FDCAN2 interrupt Init */
        HAL_NVIC_SetPriority(FDCAN2_IT0_IRQn, 1, 0);
        HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn);
      /* USER CODE BEGIN FDCAN2_MspInit 1 */
    
      /* USER CODE END FDCAN2_MspInit 1 */
      }
    }
    
    void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* fdcanHandle)
    {
    
      if(fdcanHandle->Instance==FDCAN2)
      {
      /* USER CODE BEGIN FDCAN2_MspDeInit 0 */
    
      /* USER CODE END FDCAN2_MspDeInit 0 */
        /* Peripheral clock disable */
        __HAL_RCC_FDCAN_CLK_DISABLE();
    
        /**FDCAN2 GPIO Configuration
        PB12     ------> FDCAN2_RX
        PB13     ------> FDCAN2_TX
        */
        HAL_GPIO_DeInit(GPIOB, GPIO_PIN_12|GPIO_PIN_13);
    
        /* FDCAN2 interrupt Deinit */
        HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);
      /* USER CODE BEGIN FDCAN2_MspDeInit 1 */
    
      /* USER CODE END FDCAN2_MspDeInit 1 */
      }
    }
    

    添加

    配置接收过滤与中断

    过滤主要有 4 种, FDCAN_FILTER_RANGE、FDCAN_FILTER_MASK、FDCAN_FILTER_DUAL、FDCAN_FILTER_RANGE_NO_EIDM,这里使用 FDCAN_FILTER_MASK 过滤

    	FDCAN_FilterTypeDef sFilterConfig;
    	sFilterConfig.IdType       = FDCAN_STANDARD_ID;
    	sFilterConfig.FilterIndex  = 0;
    	sFilterConfig.FilterType   = FDCAN_FILTER_MASK;
    	sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
    	sFilterConfig.FilterID1    = 0x111;
    	sFilterConfig.FilterID2    = 0x7F0;  // mask 为1部分需完全匹配
    	HAL_FDCAN_ConfigFilter(&hfdcan2, &sFilterConfig);
    	HAL_FDCAN_ConfigGlobalFilter(&hfdcan2,FDCAN_REJECT, DISABLE, DISABLE, DISABLE);  //设置被滤除掉的消息的处理方式
    	HAL_FDCAN_ConfigRxFifoOverwrite(&hfdcan2, FDCAN_RX_FIFO0, FDCAN_RX_FIFO_BLOCKING);
    	HAL_FDCAN_ActivateNotification(&hfdcan2,FDCAN_IT_RX_FIFO0_NEW_MESSAGE,0);
    
    	/* set the wartermark of Rx FIFO0 to 1 */
    	HAL_FDCAN_ConfigFifoWatermark(&hfdcan2, FDCAN_CFG_RX_FIFO0, 1);
    //	/* Enable wartermark interrupts of Rx FIFO0  */
    	HAL_FDCAN_ActivateNotification(&hfdcan2, FDCAN_IT_RX_FIFO0_WATERMARK, 0);
    
    	HAL_FDCAN_Start(&hfdcan2);
    

    中断接收

    中断接收采用 FDCAN_IT_RX_FIFO0_NEW_MESSAGE 接收,需要同时打开 FDCAN_IT_RX_FIFO0_WATERMARK

    struct canfd_frame{
      uint16_t can_id;
      uint16_t dlc;
      uint8_t data[64];
    };
    void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
    {
    	if(RxFifo0ITs & FDCAN_IT_RX_FIFO0_NEW_MESSAGE){
    		struct canfd_frame* buff;
    
    		HAL_FDCAN_GetRxMessage(hfdcan, FDCAN_RX_FIFO0, &rxHeader, buff->data);
    
    		buff->can_id = rxHeader.Identifier;
    		buff->dlc = rxHeader.DataLength >> 16;
    	}
    }
    

    发送

    发送需要需要注意 BitRateSwitch 需要为 FDCAN_BRS_OFF, DataLength 为高 16 位

    	static FDCAN_TxHeaderTypeDef txHeader = {0};
    	txHeader.IdType = FDCAN_STANDARD_ID;
    	txHeader.TxFrameType = FDCAN_DATA_FRAME;
    	txHeader.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
    	txHeader.BitRateSwitch = FDCAN_BRS_OFF;
    	txHeader.FDFormat = FDCAN_FD_CAN; 
    	txHeader.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
    	txHeader.MessageMarker = 0;
    	txHeader.Identifier = buff->can_id;
    	txHeader.DataLength = buff->dlc << 16; 
    	memcpy(txData, buff->data, sizeof(txData));
    
    	while (HAL_FDCAN_GetTxFifoFreeLevel(&hfdcan2) == 0){
    		if(hfdcan2.Instance->TXFQS & FDCAN_TXFQS_TFQF){
    			HAL_FDCAN_DeInit(&hfdcan2);
    			MX_FDCAN2_Init();
    			//这里重新初始化 can
    		}
    	}
    
    	HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan2, &txHeader, txData);
    	
    

    错误中断

    错误中断需要开启,用于错误检测与复位 can 通信,在使用中存在因为 can 产生错误,而后不进入中断问题,此时,需要在错误后,复位 can,让其重新配置。

    可以在配置时,打开这些错误中断,错误状态中,检测这3个 FDCAN_IR_EP 、FDCAN_IR_EW 、FDCAN_IR_BO 即可;错误回调中检测 FDCAN_IR_PED,其他的暂未发现问题。

    HAL_FDCAN_ActivateNotification(&hfdcan2, FDCAN_IT_BUS_OFF | FDCAN_IT_ERROR_WARNING |
    			FDCAN_IT_ERROR_PASSIVE | FDCAN_IT_RESERVED_ADDRESS_ACCESS |
    			FDCAN_IT_DATA_PROTOCOL_ERROR | FDCAN_IT_ARB_PROTOCOL_ERROR |
    			FDCAN_IT_ERROR_LOGGING_OVERFLOW | FDCAN_IT_RAM_ACCESS_FAILURE, 0);
    
    
    void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef *hfdcan)
    {
    	if(hfdcan2.ErrorCode & FDCAN_IR_PED){
    		resetCan();
    	}
    }
    
    void HAL_FDCAN_ErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ErrorStatusITs)
    {
    	if(ErrorStatusITs & (FDCAN_IR_EP | FDCAN_IR_EW | FDCAN_IR_BO)){
    		resetCan();
    	}
    }
    

  • stm32mp15x 的 DLC 和其他的 st 芯片不一样,在高 16位,使用时注意左右移。
  • #define FDCAN_DLC_BYTES_0  ((uint32_t)0x00000000U) /*!< 0 bytes data field  */
    #define FDCAN_DLC_BYTES_1  ((uint32_t)0x00010000U) /*!< 1 bytes data field  */
    #define FDCAN_DLC_BYTES_2  ((uint32_t)0x00020000U) /*!< 2 bytes data field  */
    #define FDCAN_DLC_BYTES_3  ((uint32_t)0x00030000U) /*!< 3 bytes data field  */
    #define FDCAN_DLC_BYTES_4  ((uint32_t)0x00040000U) /*!< 4 bytes data field  */
    #define FDCAN_DLC_BYTES_5  ((uint32_t)0x00050000U) /*!< 5 bytes data field  */
    #define FDCAN_DLC_BYTES_6  ((uint32_t)0x00060000U) /*!< 6 bytes data field  */
    #define FDCAN_DLC_BYTES_7  ((uint32_t)0x00070000U) /*!< 7 bytes data field  */
    #define FDCAN_DLC_BYTES_8  ((uint32_t)0x00080000U) /*!< 8 bytes data field  */
    #define FDCAN_DLC_BYTES_12 ((uint32_t)0x00090000U) /*!< 12 bytes data field */
    #define FDCAN_DLC_BYTES_16 ((uint32_t)0x000A0000U) /*!< 16 bytes data field */
    #define FDCAN_DLC_BYTES_20 ((uint32_t)0x000B0000U) /*!< 20 bytes data field */
    #define FDCAN_DLC_BYTES_24 ((uint32_t)0x000C0000U) /*!< 24 bytes data field */
    #define FDCAN_DLC_BYTES_32 ((uint32_t)0x000D0000U) /*!< 32 bytes data field */
    #define FDCAN_DLC_BYTES_48 ((uint32_t)0x000E0000U) /*!< 48 bytes data field */
    #define FDCAN_DLC_BYTES_64 ((uint32_t)0x000F0000U) /*!< 64 bytes data field */
    
  • 短路 can 芯片的 H 和 L 两个差分脚,会触发FDCAN_TXFQS_TFQF,此时会无法正常发送,需要重新初始化 canfd
  • 在 linux 下用时,需要手动打开 PLL4R
  • __HAL_RCC_PLL4CLKOUT_ENABLE(RCC_PLL4_DIVR);
    
  • 发送时,BitRateSwitch 需要配置成 FDCAN_BRS_OFF,不然无法发送
  • txHeader.BitRateSwitch = FDCAN_BRS_OFF;
    
  • 使用 FDCAN_IT_RX_FIFO0_NEW_MESSAGE 中断时,需要将 FDCAN_IT_RX_FIFO0_WATERMARK 中断也打开,不然只能中断一次
  • 在线调试时,需要在板子中运行没有中断的程序,然后再使用调试器,下载有中断的程序,不然程序调试有问题;且只能调试一次,需要重新上下电才能正常,就是说,产生中断后,程序就不能进行中断调试了
  • 参考

    https://github.com/STMicroelectronics/STM32CubeH7/blob/master/Projects/STM32H743I-EVAL/Examples/FDCAN/FDCAN_Com_IT/Src/main.c
    https://github.com/STMicroelectronics/STM32CubeMP1/blob/master/Projects/STM32MP157C-EV1/Examples/FDCAN/FDCAN_Loopback/Src/main.c
    https://club.rt-thread.org/ask/article/f354701c18db97db.html

    作者:feitingfj

    物联沃分享整理
    物联沃-IOTWORD物联网 » stm32mp15x 之 M4 使用 canfd

    发表回复