• 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍦 参考文章:[365天深度学习训练营-第P3周:天气识别](365天深度学习训练营-第P3周:天气识别 · 语雀 (yuque.com))**
  • 🍖 原作者:K同学啊|接辅导、项目定制
  •  我的环境

  • 语言环境:Python3.6
  • 编译器:jupyter lab
  • 深度学习环境:pytorch1.10
  • 参考文章:本人博客(60条消息) 机器学习之——tensorflow+pytorch_重邮研究森的博客-CSDN博客
  • 🍺要求:

    1. 本地读取并加载数据。(✔)
    1. 测试集accuracy到达93%(✔)

    🍻拔高:

    1. 测试集accuracy到达95%(✔)
    2. 调用模型识别一张本地图片(✔)

     


    目录

    一 前期工作

    1.设置GPU或者cpu

    2.导入数据

    二 数据预处理

    三 搭建网络

    四 训练模型

    1.设置学习率

    2.模型训练

    五 模型评估

    1.Loss和Accuracy图

    2.对结果进行预测

    3.总结


    一 前期工作

    环境:python3.6,1080ti,pytorch1.10(实验室服务器的环境😂😂)

    1.设置GPU或者cpu

    import torch
    import torch.nn as nn
    import matplotlib.pyplot as plt
    import torchvision
     
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
     
    device

    2.导入数据

    import os,PIL,random,pathlib
    
    data_dir = 'weather_photos/'
    data_dir = pathlib.Path(data_dir)
    print(data_dir)
    
    data_paths = list(data_dir.glob('*'))
    print(data_paths)
    classeNames = [str(path).split("/")[1] for path in data_paths]
    classeNames

    二 数据预处理

    数据格式设置

    total_datadir = 'weather_photos/'
    
    # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
    total_data

    数据集划分

    train_size = int(0.8 * len(total_data))
    test_size  = len(total_data) - train_size
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
    train_dataset, test_dataset

    设置dataset

    batch_size = 32
    
    train_dl = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=1)
    test_dl = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=batch_size,
                                              shuffle=True,
                                              num_workers=1)

    检查数据格式 

    for X, y in test_dl:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break

      

    三 搭建网络

    
    import torch
    from torch import nn
    from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential,ReLU
    
    num_classes = 4
    
    class Model(nn.Module):
        def __init__(self):
            super(Model,self).__init__()
            # 卷积层
            self.layers = Sequential(
                # 第一层
                nn.Conv2d(3, 24, kernel_size=5),
                nn.BatchNorm2d(24),
                nn.ReLU(),
                # 第二层
                nn.Conv2d(24,64 , kernel_size=5),
                nn.BatchNorm2d(64),
                nn.ReLU(),
                nn.MaxPool2d(2,2),
                nn.Conv2d(64, 128, kernel_size=5),
                nn.BatchNorm2d(128),
                nn.ReLU(),
                nn.Conv2d(128, 24, kernel_size=5),
                nn.BatchNorm2d(24),
                nn.ReLU(),
                nn.MaxPool2d(2,2),
                nn.Flatten(),
                nn.Linear(24*50*50, 516,bias=True),
                nn.ReLU(),
                nn.Dropout(0.5),
                nn.Linear(516, 215,bias=True),
                nn.ReLU(),
                nn.Dropout(0.5),
                nn.Linear(215, num_classes,bias=True),
            )
    
        def forward(self, x):
    
            x = self.layers(x)
            return x    
    
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
    
    model = Model().to(device)
    model

    打印网络结构

      

    四 训练模型

    1.设置学习率

    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    learn_rate = 1e-3 # 学习率
    opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

    2.模型训练

    训练函数

    # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
        num_batches = len(dataloader)   # 批次数目,1875(60000/32)
     
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
            
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches
     
        return train_acc, train_loss

    测试函数 

    def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
        num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
                
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
     
        test_acc  /= size
        test_loss /= num_batches
     
        return test_acc, test_loss

    具体训练代码 

    epochs     = 30
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    for epoch in range(epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    print('Done')

      

    五 模型评估

    1.Loss和Accuracy图

    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()

      

    2.对结果进行预测

    import os
    import json
    
    import torch
    from PIL import Image
    from torchvision import transforms
    import matplotlib.pyplot as plt
    
    img_path = "weather_photos/cloudy/cloudy1.jpg"
    classes = ['cloudy', 'rain', 'shine', 'sunrise']
    data_transform = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    def main():
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        
        img = Image.open(img_path)
        plt.imshow(img)
        # [N, C, H, W]
        img = data_transform(img)
        # expand batch dimension
        img = torch.unsqueeze(img, dim=0)
        model.eval()
        with torch.no_grad():
            # predict class
            output = torch.squeeze(model(img.to(device))).cpu()
            predict = torch.softmax(output, dim=0)
            predict_cla = torch.argmax(predict).numpy()
            print(classes[predict_cla])
        plt.show()
        
    if __name__ == '__main__':
        main()
    

    预测结果如下:

      

    3.总结

     1.本次能主要对以下函数进行了学习

    transforms.Compose 针对数据转换,例如尺寸,类型
    datasets.ImageFolder 结合上面这个对某文件夹下数据处理
    torch.utils.data.DataLoader 设置dataset

    详情文章参考如下:

    torchvision.transforms.Compose()详解【Pytorch入门手册】_K同学啊的博客-CSDN博客_torchvision.transforms.compose

     (10条消息) torchvision.datasets.ImageFolder_平凡的久月的博客-CSDN博客_datasets.imagefolder

    2.对于pytorch下面进行预测感觉还添麻烦的,,,,,上文预测代码还是网上搜的。 

    3.准确率提高到了97

     

    物联沃分享整理
    物联沃-IOTWORD物联网 » pytorch-实现天气识别

    发表评论