一、通过操作Cortex-A7核,串口输入相应的命令,控制LED灯进行工作

1.例如在串口输入led1on,开饭led1灯点亮

2.例如在串口输入led1off,开饭led1灯熄灭

3.例如在串口输入led2on,开饭led2灯点亮

4.例如在串口输入led2off,开饭led2灯熄灭

5.例如在串口输入led3on,开饭led3灯点亮

6.例如在串口输入led3off,开饭led3灯熄灭

二、检测中断到来时,让LED灯状态取反,并且在串口工具上打印一句话

例如:当按键1按下之后,让LED1状态取反,并打印“LED1 down”

        当按键2按下之后,让LED2状态取反,并打印“LED2 down”

        当按键3按下之后,让LED3状态取反,并打印“LED3 down”

        火焰传感器/人体红外/光电开关实验要求如上 


作业一:

uart_led.h:

#ifndef __UART_LED_H__
#define __UART_LED_H__

#include "stm32mp1xx_rcc.h"
#include "stm32mp1xx_gpio.h"
#include "stm32mp1xx_uart.h"
#include "stm32mp1xx_exti.h"
#include "stm32mp1xx_gic.h"

//重写strcmp函数
int strcmp(const char *s1, const char *s2);

//对LED灯初始化
void hal_led_init();

//对GPIO引脚初始化函数
void hal_gpio_init(gpio_t* gpiox, gpio_init_t* init, unsigned int pin);

//对GPIO引脚写操作函数
void hal_led_gpio_write(gpio_t* gpiox, unsigned int pin, gpio_status_t state);

//初始化串口
void hal_uart_init();

//发送一个字节
void uart_put_char(const char str);
 
//发送一个字符串
void uart_put_string(const char* str);
 
//接受一个字符
char uart_get_char();
 
//接收一个字符串
char* uart_get_string();

#endif

uart_led.c:

#include "uart_led.h"

extern void printf(const char *fmt, ...);
extern void delay_ms(int ms);

//重写strcmp函数
int strcmp(const char *s1, const char *s2)
{
	int t = 0;
	while(*s1 || *s2)
	{
		if(*s1 != *s2)
		{
			t = *s1 - *s2;
			return t;
		}
		*s1 ++;
		*s2 ++;
	}
	return t;
}

//对LED灯初始化
void hal_led_init()
{
	//RCC时钟初始化
	RCC->MP_AHB4ENSETR |= (0x3 << 4);

	//结构体初始化
	gpio_init_t init = {Output, Push_pull, Low_speed, No_up_down};

	//GPIO初始化
	hal_gpio_init(GPIOE, &init, GPIO_PIN_10);
	hal_gpio_init(GPIOF, &init, GPIO_PIN_10);
	hal_gpio_init(GPIOE, &init, GPIO_PIN_8);
}

//对GPIO引脚初始化函数
void hal_gpio_init(gpio_t* gpiox, gpio_init_t* init, unsigned int pin)
{
	//GPIO输出模式初始化
	gpiox->MODER &= (~(0x3 << (pin * 2)));
	gpiox->MODER |= (init->moder << (pin * 2));

	//GPIO输出类型初始化
	gpiox->OTYPER &= (~(0x1 << pin));
	gpiox->OTYPER |= (init->otyper << pin);

	//GPIO输出速度初始化
	gpiox->OSPEEDR &= (~(0x3 << (pin * 2)));
	gpiox->OSPEEDR |= (init->ospeedr << (pin * 2));

	//GPIO是否需要上下拉
	gpiox->PUPDR &= (~(0x3 << (pin * 2)));
	gpiox->PUPDR |= (init->pupdr << (pin * 2));
}

//对GPIO引脚写操作函数
void hal_led_gpio_write(gpio_t* gpiox, unsigned int pin, gpio_status_t state)
{
	if(gpio_reset_t == state)
		gpiox->ODR &= (~(0x1 << pin));
	else
		gpiox->ODR |= (0x1 << pin);
}

//初始化串口
void hal_uart_init()
{
	/*********RCC章节初始化********/
	RCC->MP_AHB4ENSETR |= (0x1 << 1);
	RCC->MP_AHB4ENSETR |= (0x1 << 6);
	RCC->MP_APB1ENSETR |= (0x1 << 16);
	/*********GPIO章节初始化*******/
	gpio_init_t init = {0};
	init.moder = Alternate; 	//设置GPIO模式为复用模式
	hal_gpio_init(GPIOB, &init, GPIO_PIN_2);
	hal_gpio_init(GPIOG, &init, GPIO_PIN_11);

	GPIOB->MODER |= (0x1 << 5);
	GPIOB->AFRL &= (~(0xF << 8));
	GPIOB->AFRL |= (0x1 << 11);
	GPIOG->MODER |= (0x1 << 23);
	GPIOG->AFRH &= (~(0xF << 12));
	GPIOG->AFRH |= (0x3 << 13);
	/*********UART章节初始化*******/
	if(USART4->CR1 & (0x1 << 0))    //判断UE位是否为0    
	{                                                    
		delay_ms(500);                                   
		USART4->CR1 &= (~(0x1 << 0));                    
	}                                                    
	USART4->CR1 &= (~(0x1 << 28));  //设置数据位宽度为8位
	USART4->CR1 &= (~(0x1 << 12));                       
	USART4->CR1 &= (~(0x1 << 15));  //设置串口采样率     
	USART4->CR1 &= (~(0x1 << 10));  //设置无奇偶校验位   
	USART4->CR2 &= (~(0x3 << 12));  //设置串口1位停止位  
	USART4->PRESC &= (~(0x3 << 3)); //设置串口不分频     
	USART4->BRR |= 0x22B;           //设置串口波特率     
	USART4->CR1 |= (0x1 << 2);      //串口发送器使能     
	USART4->CR1 |= (0x1 << 3);      //串口接收器使能     
	USART4->CR1 |= (0x1 << 0);          //串口使能       
}

//发送一个字节
void uart_put_char(const char str)
{
	//1.判断发送数据寄存器是否为空,为空才可以发送下一个字节
	//ISR[7]  
	//读0:发送数据寄存器满,需要等待
	//读1:发送数据寄存器空,才可以发送下一个字节数据
	while(!(USART4->ISR & (0x1 << 7)));
 
	//2.将要发送的字符写到发送数据寄存器中
	USART4->TDR = str;
 
	//3.判断发送数据是否完成 ISR[6]
	while(!(USART4->ISR & (0x1 << 6)));
}
 
//发送一个字符串
void uart_put_string(const char* str)
{
	//判断是否为'\0',一个字符一个字符发
	for(int i = 0; str[i] != '\0'; i++)
	{
		uart_put_char(str[i]);	
	}
	printf("\n");
}
 
//接受一个字符
char uart_get_char()
{
	char ch;
	//1.判断接收数据寄存器是否有数据可读 ISR[5]
	while(!(USART4->ISR & (0x1 << 5)));
 
	//2.将接收到的数据读出来
	ch = USART4->RDR;
 
	return ch;
}
 
char buff[50] = {0};
//接收一个字符串
char* uart_get_string()
{
	int i = 0;
 
	//for循环
	//当键盘的回车键'\r'按下之后,字符串输入完成
	for(i = 0; i < 48; i++)
	{
		buff[i] = uart_get_char();	
		if(buff[i] == '\r')
			break;
		uart_put_char(buff[i]);
	}
	
	//字符串补'\0'
	buff[i] = '\0';
	printf("\n");

	//对接收到的字符串进行判断
	if(strcmp(buff,"led1on") == 0)
	{
		hal_led_gpio_write(GPIOE, GPIO_PIN_10, gpio_set_t);
		return "LED1_ON success";
	}
	else if(strcmp(buff,"led1off") == 0)
	{
		hal_led_gpio_write(GPIOE, GPIO_PIN_10, gpio_reset_t);
		return "LED1_OFF success";
	}
	else if(strcmp(buff,"led2on") == 0)
	{
		hal_led_gpio_write(GPIOF, GPIO_PIN_10, gpio_set_t);
		return "LED2_ON success";
	}
	else if(strcmp(buff,"led2off") == 0)
	{
		hal_led_gpio_write(GPIOF, GPIO_PIN_10, gpio_reset_t);
		return "LED2_OFF success";
	}
	else if(strcmp(buff,"led3on") == 0)
	{
		hal_led_gpio_write(GPIOE, GPIO_PIN_8, gpio_set_t);
		return "LED3_ON success";
	}
	else if(strcmp(buff,"led3off") == 0)
	{
		hal_led_gpio_write(GPIOE, GPIO_PIN_8, gpio_reset_t);
		return "LED3_OFF success";
	}

	return "invalid instruction!";
}

 main.c:

#include "uart_led.h"

extern void printf(const char *fmt, ...);

void delay_ms(int ms)
{
	int i,j;
	for(i = 0; i < ms;i++)
		for (j = 0; j < 1800; j++);
}

int main()
{
	hal_led_init();     //LED灯初始化
	hal_uart_init(); 	//串口初始化
	while(1)
	{
		uart_put_string(uart_get_string());
	}
	return 0;
}

测试结果如下: 


作业二:

 实验现象如下:

物联沃分享整理
物联沃-IOTWORD物联网 » 2022年2月23日的作业

发表评论