江科大嵌入式STM32教程:外部中断(EXTI)详解

文章目录

  • 一:EXTI外部中断(external interrupt)
  • 1.1 STM32 中断系统
  • 1.2 STM32外部中断EXTI
  • 1.3 实验:对射式红外传感器计次
  • 1.31 编程感想
  • 1.4 实验:旋转编码器计次
  • 1.41 编程感想
  • 道友:没有永久的巅峰也没有永远的低谷,真正的强大不是忘记而是接受,接受世事无常、接受孤独挫败、接受突如其来的无力感、接受自己的不完美、接受困惑不安的焦虑和遗憾。
  • 一:EXTI外部中断(external interrupt)

    1.1 STM32 中断系统

    中断是指在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续执行,当中断发生时是由硬件自动调用中断函数执行的,期间编译器会保护现场最后还原现场。使得中断系统极大程度地提高程序的效率,就像是给自己定闹钟,可以不用担心错过时间而可以安心睡觉,在这个过程中,有如下概念:

  • 中断优先级:当有多个中断源同时申请中断时,CPU会根据中断源的轻重缓急进行裁决,优先响应更加紧急的中断源。
  • 中断嵌套:当一个中断程序正在运行时,又有新的更高优先级的中断源申请中断,CPU再次暂停当前中断程序,CPU再次暂停当前中断程序,转而去处理新的中断程序,处理完成后依次进行返回。
  • stm32的F1系列总共有68个可屏蔽中断通道(中断源),包含EXTI、TIM、ADC、USART、SPI、I2C、RTC等多个外设。所有的中断使用嵌套向量中断控制器NVIC统一管理中断,每个中断通道都拥有16个可编程的优先等级,可对优先级进行分组,进一步设置抢占优先级和响应优先级。具体到某一个型号的芯片可能不会有这多中断,具体需要查看的芯片手册。下面是手册中的中断向量表节选:

  • 地址(最后一列):存储中断地址,这个地址列表也称为中断向量表。因为程序中的中断函数地址由编译器来分配,所以中断函数地址不固定。但由于硬件的限制,中断跳转只能跳转到固定的地址执行程序。所以为了让硬件能跳转到(一个地址不固定的)中断函数里,就需要在内存中定义一个固定的地址列表。当中断发生后,首先跳转到这个固定的地址列表,编译器会在这个固定的位置加上一条跳转到中断函数的代码,于是中断跳转就可以跳转到任意位置了。中断地址列表就是中断向量表,相当于是中断跳转的跳板。C语言编程无需关注中断向量表,汇编语言需要
  • 上图给出了嵌套向量中断控制器NVIC的基本结构示意图。在stm32中,NVIC用于统一管理中断和分配中断优先级,属于内核外设,是CPU的小助手,可以让CPU专注于运算。从上图可以看出:

  • NVIC有很多输入口,每个都代表一个中断线路,如EXTI、TIM、ADC等。
  • 每个中断线路上的斜杠n表示n条线,因为一个外设可能会同时占用多个中断通道。
  • NVIC只有一个输出口,通过中断优先级确定中断执行的顺序。
  • NVIC的中断优先级由优先级寄存器的4位二进制(十进制0~15)决定,这4位可以进行切分,分为高n位的抢占优先级和低(4-n)位的响应优先级。
    抢占优先级高的可以中断嵌套,响应优先级高的可以优先排队,抢占优先级和响应优先级均相同的按中断号排队。这个中断号就是指中断向量表的第二列“优先级”。

    用医院的叫号系统来举例子。假设医生正在给某个病人看病,外面还有很多病人排队:

    1. 新来的病人 抢占优先级高就相当于直接进屋打断医生,给自己看病。
    2. 新来的病人 响应优先级高就相当于不打扰医生,但直接插队,排在队伍的第一个。

    下表是NVIC优先级的分组方式

    分组方式 抢占优先级 响应优先级
    分组0(n = 0) 0位,取值为0 4位,取值为0~15
    分组1(n = 1) 1位,取值为0~1 3位,取值为0~7
    分组2(n = 2) 2位,取值为0~3 2位,取值为0~3
    分组3(n = 3) 3位,取值0~ 7 1位,取值为0~ 1
    分组4(n = 4) 4位,取值为0~15 0位,取值为0

    注:NVIC是内核外设,更多关于NVIC的介绍参考“STM32F10xxx Cortex-M3编程手册”。 NVIC

  • 中断分组的配置寄存器,在SCB_AIRCR中,PRIGROUP这三位就是用于配置中断分组的。
  • 1.2 STM32外部中断EXTI

    下图是外部中断向量表片选

    中断系统是管理和执行中断的逻辑结构,外部中断是众多能产生中断的外设之一,而EXTI就是其中之一(比如USART、I2C,参考上面的NVIC基本结构),上图给出了外部中断向量表。EXTI(external interrupt)外部中断可以监测指定的GPIO口的电平信号,当其指定的GPIO口产生电平变化时,EXTI将立即向NVIC发出中断申请,经过NVIC裁决后即可中断CPU主程序,使得CPU执行EXTI对应的中断程序。

  • 支持的触发方式:上升沿/下降沿/双边沿/软件触发(上升沿就是低电平到高电平触发)
  • 支持的GPIO口:所有GPIO口,但相同的Pin不能同时触发中断(比如gpioa_Pin1与gpiob_pin1不能同时触发中断)。
  • 通道数:16个GPIO_Pin,外加PVD输出、RTC闹钟、USB唤醒、以太网唤醒,共20个。
  • 注:后面这四个功能是为了实现一些特殊的功能,比如想实现某个时间让stm32退出停止模式,由于外部中断可以在低功耗模式的停止模式下唤醒stm32,就可以在GPIO口上连接一个RTC时钟作为外部中断。

  • 触发响应方式:中断响应/事件响应。
  • 注意:
    中断响应就是正常的中断流程,申请中断让CPU执行中断函数;
  • 事件响应就是外部中断发生时,不把外部信号给CPU,而是选择触发一个事件,将这个信号通向其他外设,来触发其他外设的操作,可以实现外设之间的联合工作(中介分包)。
  • 下图是EXTI的基本结构
    Alternate Fuction I/O:数据选择器(交替作用)
    记形状:梯形(多个输入一个输出)

  • 最左侧:GPIO口的外设,每个外设都有16个引脚。
  • AFIO中断引脚选择:本质上就是数据选择器,从前面16*n 个引脚中选择16根端口号不重复的引脚出来,连接到后面的EXTI通道中。在STM32中,AFIO主要完成两个任务:复用功能引脚重映射、中断引脚选择。下面是中断引脚选择的AFIO示意图:
  • PVD、RTC、USB、ETH:四个特殊功能的外设。
  • EXTI 边沿检测及控制:20个输入通道、两类输出。一类输出到NVIC中,并且将这20路输出的9、10 路外部中断合并在一起以节省通道;另一类输出到其他外设,直接就是20路输出。
    注:上面这个EXTI的基本结构也是编写代码时的主要参考图!
  • 下图是EXTI 框图(方向为从左到右)-stm32F10系列参考手册

    上图给出了参考手册中的EXTI框图。基本逻辑与“EXTI的基本结构”中所述相同,另外还有一些细节:

  • 边沿检测电路+软件中断事件寄存器:这个几个进行或门输出,便可以实现“上升沿/下降沿/双边沿/软件触发”这四种触发方式。
  • 请求挂起寄存器:相当于一个中断标志位,通过读取该寄存器可以判断是哪个通道触发的中断。
  • 中断屏蔽寄存器/事件屏蔽寄存器:相当于开关,只有置1,中断信号才能继续向左走。
  • 脉冲发生器:产生一个电平脉冲,用于触发其他外设工作。
  • 最后一个问题,到底什么样的设备需要用到外部中段呢?

    答:对于stm32来说,若想获取一个由外部驱动的很快的突发信号,就需要外部中断。

  • 如旋转编码器,平常不会有什么变化,但是一旦拧动时,会产生一段时间变化很快的突发信号,就需要stm32能在短时间内快速读取并处理掉这个数据。

  • 再如红外遥控接收头,平常也不会有什么变化,但是一旦接收到信号时,这个信号也是转瞬即逝的。

  • 但是不推荐按键使用外部中断。因为外部中断不能很好的处理按键抖动和松手检测的问题,所以要求不高时,还是建议在主函数内部循环读取。

  • 1.2 旋转编码器介绍
    对射式红外传感器就是一种通用传感器模块,已经在第三节“GPIO通用输入输出口”中介绍过,不再赘述。本实验只介绍旋转编码器。

    旋转编码器是一种用来测量位置、速度或旋转方向的装置,当其旋转轴旋转时,其输出端可以与旋转速度和方向对应的方波信号,读取方波信号的频率和相位信息即可得知旋转轴的速度和方向。

    如上图,旋转编码器主要有三种类型:光栅式/机械触点式/霍尔传感器式。下面是这三种形式的介绍:

    1. 光栅式(老款鼠标):配合对射式红外传感器使用,在旋转过程中光栅式编码盘会不断地阻挡/透过红外射线,于是模块便会输出高低电平交替的方波,方波的频率便代表了旋转速度。缺点是只有一路输出,无法判断转动方向。
    2. 机械触点式:内部使用机械触点检测通断,A口和B口输出的方波正交,具体看下面的介绍。当然,也有机械触点式编码器可以一个引脚输出速度信息,一一个引脚输出旋转方向信息。
    3. 霍尔传感器式:直接附在电机后面的编码器,中间是一个圆形磁铁,旋转时两侧的霍尔传感器便可输出正交的方波信号。
    4. 独立的编码器元件:输入轴转动时,输出便有波形。

    注:触点式不适合高速旋转的场景,常用于音量调节。非接触式形式的电机可以用于电机测速。

    上图是机械触点式旋转编码器-实物拆解

  • 图片右侧是旋转编码器的旋钮,可以看到下面是一圈可以导电的金属片。
  • 中间有一个大的按键开关结构,也可以检测通断,但是该旋转编码器模块没有使用到该功能。
  • 左右两组金属触点。内部实际的连接如红线标注,C口接地,于是旋钮在旋转过程中就可以使A口、B口输出高低交替的方波。方波频率表示旋转速度。
  • A口、B口配合旋钮,可以产生相位相差90°的方波,称为正交信号。顺时针旋转A口相位超前,逆时针旋转B口相位超前。
  • R1、R2:上拉电阻。
  • R3、R4:输出限流电阻,防止引脚电流过大。
  • C1、C2:滤波电容,滤除高频不稳定纹波。
    注:C口已经默认接地,只需关心A口、B口的高低变化及相位差即可。
  • 1.3 实验:对射式红外传感器计次

    需求:利用stm32的外部中断,对 对射式红外传感器 产生的下降沿进行计次。

    上图是对射式红外传感器计次-接线图
    下图是对射式红外传感器计次-代码调用
    代码展示:OLED.h、OLED.c、OLED_Font.h代码见第四节“OLED调试工具”,本节省略。
    文章在这《嵌入式-stm32-江科大-OLED调试工具》

    main.c

    #include "stm32f10x.h"
    #include "Delay.h"
    #include "OLED.h"
    #include "CountSensor.h"
    
    int main(void)
    {
    	//模块初始化
    	OLED_Init();       //OLED初始化
    	CountSensor_Init(); //计数传感器初始化
    	
    	//OLED显示,显示静态字符串
    	OLED_ShowString(1,1,"Count:");  //一行一列显示字符串
    	Delay_ms(500);
    	
    	
    	while(1)
    	{
    	OLED_ShowNum(2,1,CountSensor_Get(),5);
    	}
    
    }
    
    

    CountSensor.h

    #ifndef __COUNT_SENSOR_H
    #define __COUNT_SENSOR_H
    
    void CountSensor_Init(void);
    uint16_t CountSensor_Get(void);
    
    
    #endif
    
    

    CountSensor.c

    #include "stm32f10x.h"
    
    uint16_t  CountSensor_Count;     //全局变量,中断触发次数,用于计数
    //默认初始化为0
    
    /**
      * 函    数:对射式红外传感器-计数传感器初始化 PB14
      * 参    数:无
      * 返 回 值:无
      */
    void CountSensor_Init(void)
    {
    	//1.开启时钟
    	//2.GPIO初始化
    	//3.AFIO选择中断引脚
    	//4.EXTI初始化
    	//5.//NVIC配置,NVIC中断分组
    	
    	
    	//EXTI初始化
    	//1.开启GPIO&AFIO的外设时钟(EXTI和NVIC的时钟是一直打开的)
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
    	//2.配置GPIO—PB14上拉输入
    	GPIO_InitTypeDef  GPIO_InitStructure;
    	GPIO_InitStructure.GPIO_Mode =GPIO_Mode_IPU; //上拉输入
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
    	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    	GPIO_Init(GPIOB,&GPIO_InitStructure);
    	
    	//3.配置AFIO(库函数在GPIO中)中断引脚选择
    	GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource14);//将外部中断的14号线映射到GPIOB,即选择PB14为外部中断引脚
    	//4.配置EXTI初始化
    	EXTI_InitTypeDef EXTI_InitStructure;//改名字
    	EXTI_InitStructure.EXTI_Line = EXTI_Line14;
    	EXTI_InitStructure.EXTI_LineCmd = ENABLE;
    	EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
    	EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;//下降沿触发
    	EXTI_Init(&EXTI_InitStructure);
    	
    	//5.NVIC配置(库函数在misc.h文件中,杂项)
    	//配置NVIC中断分组
    	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
    	//配置中断的优先级分组,每个工程只能出现一次
    	NVIC_InitTypeDef NVIC_InitStructure;
    	NVIC_InitStructure.NVIC_IRQChannel = EXTI15_10_IRQn;
    	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
    	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    	NVIC_Init(&NVIC_InitStructure);
    }	
    /**
      * 函    数:获取计数传感器的计数值,输出中断触发的次数
      * 参    数:无
      * 返 回 值:计数值,范围:0~65535
      */
    uint16_t CountSensor_Get(void)
    {
    	return CountSensor_Count;
    }	
       
    /**
      * 函    数:EXTI15_10外部中断函数
      * 参    数:无
      * 返 回 值:无
      * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
      *           函数名为预留的指定名称,可以从启动文件复制
      *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
      */
    void EXTI15_10_IRQHandler(void)
    {
    	//中断标志位判断
    	if(EXTI_GetITStatus(EXTI_Line14) == SET)  //判断是否是外部中断14号线触发的中断
    	{
    		//如果出现数据乱跳的现象,可再次判断引脚电平,以避免抖动
    		if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_14) == 0 )
    		{
    			CountSensor_Count ++;  //计数值自增一次
    		
    		}
    		EXTI_ClearITPendingBit(EXTI_Line4);//清除外部中断14号线的中断标志位
    											//中断标志位必须清除
    											//否则中断将连续不断地触发,导致主程序卡死
    
    	}
    }
    
    
    
    
    
    
    
    
    
    
    
    1.31 编程感想
    1. 对射式传感器采用下降沿触发(移除遮挡触发,硬件设计)。
      传感器无遮挡时,DO输出低电平;传感器有遮挡时,DO输出高电平。所以放入遮挡物意味着触发上升沿,移除遮挡相当于下降沿。采用上升沿触发计数可能不准确,下降沿触发计数准确(实测),若传感器采用上升沿触发那么结论和上面相反,移除遮挡物的时候比较准确。

    2. 中断函数的名字从启动文件“stratup_stm32f10x_md”中来,并且中断函数都是无参无返回值的。

    3. 在CountSensor.c里面GPIO使用结构体来初始化函数、外部中断、ADC、串口都是一样的操作。

    4. 学会使用keil调试,博主第一次烧录程序发现计数传感器没有返回值,灯会闪计数,但是不会反馈到显示屏上。于是我先把老师的代码烧录运行成功,说明硬件没问题,就是自己代码问题,然后一直排除,通过用源码替换自己写的代码过程中,发现是上一个实验的OLED.c问题,CV工程师。

    OLED.c(可以跳过)

    #include "stm32f10x.h"
    #include "OLED_Font.h"
    
    /*引脚配置*/
    #define OLED_W_SCL(x)		GPIO_WriteBit(GPIOB, GPIO_Pin_8, (BitAction)(x))
    #define OLED_W_SDA(x)		GPIO_WriteBit(GPIOB, GPIO_Pin_9, (BitAction)(x))
    
    /*引脚初始化*/
    void OLED_I2C_Init(void)
    {
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    	
    	GPIO_InitTypeDef GPIO_InitStructure;
     	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
    	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
     	GPIO_Init(GPIOB, &GPIO_InitStructure);
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
     	GPIO_Init(GPIOB, &GPIO_InitStructure);
    	
    	OLED_W_SCL(1);
    	OLED_W_SDA(1);
    }
    
    /**
      * @brief  I2C开始
      * @param  无
      * @retval 无
      */
    void OLED_I2C_Start(void)
    {
    	OLED_W_SDA(1);
    	OLED_W_SCL(1);
    	OLED_W_SDA(0);
    	OLED_W_SCL(0);
    }
    
    /**
      * @brief  I2C停止
      * @param  无
      * @retval 无
      */
    void OLED_I2C_Stop(void)
    {
    	OLED_W_SDA(0);
    	OLED_W_SCL(1);
    	OLED_W_SDA(1);
    }
    
    /**
      * @brief  I2C发送一个字节
      * @param  Byte 要发送的一个字节
      * @retval 无
      */
    void OLED_I2C_SendByte(uint8_t Byte)
    {
    	uint8_t i;
    	for (i = 0; i < 8; i++)
    	{
    		OLED_W_SDA(Byte & (0x80 >> i));
    		OLED_W_SCL(1);
    		OLED_W_SCL(0);
    	}
    	OLED_W_SCL(1);	//额外的一个时钟,不处理应答信号
    	OLED_W_SCL(0);
    }
    
    /**
      * @brief  OLED写命令
      * @param  Command 要写入的命令
      * @retval 无
      */
    void OLED_WriteCommand(uint8_t Command)
    {
    	OLED_I2C_Start();
    	OLED_I2C_SendByte(0x78);		//从机地址
    	OLED_I2C_SendByte(0x00);		//写命令
    	OLED_I2C_SendByte(Command); 
    	OLED_I2C_Stop();
    }
    
    /**
      * @brief  OLED写数据
      * @param  Data 要写入的数据
      * @retval 无
      */
    void OLED_WriteData(uint8_t Data)
    {
    	OLED_I2C_Start();
    	OLED_I2C_SendByte(0x78);		//从机地址
    	OLED_I2C_SendByte(0x40);		//写数据
    	OLED_I2C_SendByte(Data);
    	OLED_I2C_Stop();
    }
    
    /**
      * @brief  OLED设置光标位置
      * @param  Y 以左上角为原点,向下方向的坐标,范围:0~7
      * @param  X 以左上角为原点,向右方向的坐标,范围:0~127
      * @retval 无
      */
    void OLED_SetCursor(uint8_t Y, uint8_t X)
    {
    	OLED_WriteCommand(0xB0 | Y);					//设置Y位置
    	OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4));	//设置X位置高4位
    	OLED_WriteCommand(0x00 | (X & 0x0F));			//设置X位置低4位
    }
    
    /**
      * @brief  OLED清屏
      * @param  无
      * @retval 无
      */
    void OLED_Clear(void)
    {  
    	uint8_t i, j;
    	for (j = 0; j < 8; j++)
    	{
    		OLED_SetCursor(j, 0);
    		for(i = 0; i < 128; i++)
    		{
    			OLED_WriteData(0x00);
    		}
    	}
    }
    
    /**
      * @brief  OLED显示一个字符
      * @param  Line 行位置,范围:1~4
      * @param  Column 列位置,范围:1~16
      * @param  Char 要显示的一个字符,范围:ASCII可见字符
      * @retval 无
      */
    void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char)
    {      	
    	uint8_t i;
    	OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8);		//设置光标位置在上半部分
    	for (i = 0; i < 8; i++)
    	{
    		OLED_WriteData(OLED_F8x16[Char - ' '][i]);			//显示上半部分内容
    	}
    	OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8);	//设置光标位置在下半部分
    	for (i = 0; i < 8; i++)
    	{
    		OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]);		//显示下半部分内容
    	}
    }
    
    /**
      * @brief  OLED显示字符串
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  String 要显示的字符串,范围:ASCII可见字符
      * @retval 无
      */
    void OLED_ShowString(uint8_t Line, uint8_t Column, char *String)
    {
    	uint8_t i;
    	for (i = 0; String[i] != '\0'; i++)
    	{
    		OLED_ShowChar(Line, Column + i, String[i]);
    	}
    }
    
    /**
      * @brief  OLED次方函数
      * @retval 返回值等于X的Y次方
      */
    uint32_t OLED_Pow(uint32_t X, uint32_t Y)
    {
    	uint32_t Result = 1;
    	while (Y--)
    	{
    		Result *= X;
    	}
    	return Result;
    }
    
    /**
      * @brief  OLED显示数字(十进制,正数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:0~4294967295
      * @param  Length 要显示数字的长度,范围:1~10
      * @retval 无
      */
    void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
    {
    	uint8_t i;
    	for (i = 0; i < Length; i++)							
    	{
    		OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0');
    	}
    }
    
    /**
      * @brief  OLED显示数字(十进制,带符号数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:-2147483648~2147483647
      * @param  Length 要显示数字的长度,范围:1~10
      * @retval 无
      */
    void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length)
    {
    	uint8_t i;
    	uint32_t Number1;
    	if (Number >= 0)
    	{
    		OLED_ShowChar(Line, Column, '+');
    		Number1 = Number;
    	}
    	else
    	{
    		OLED_ShowChar(Line, Column, '-');
    		Number1 = -Number;
    	}
    	for (i = 0; i < Length; i++)							
    	{
    		OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0');
    	}
    }
    
    /**
      * @brief  OLED显示数字(十六进制,正数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:0~0xFFFFFFFF
      * @param  Length 要显示数字的长度,范围:1~8
      * @retval 无
      */
    void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
    {
    	uint8_t i, SingleNumber;
    	for (i = 0; i < Length; i++)							
    	{
    		SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16;
    		if (SingleNumber < 10)
    		{
    			OLED_ShowChar(Line, Column + i, SingleNumber + '0');
    		}
    		else
    		{
    			OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A');
    		}
    	}
    }
    
    /**
      * @brief  OLED显示数字(二进制,正数)
      * @param  Line 起始行位置,范围:1~4
      * @param  Column 起始列位置,范围:1~16
      * @param  Number 要显示的数字,范围:0~1111 1111 1111 1111
      * @param  Length 要显示数字的长度,范围:1~16
      * @retval 无
      */
    void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
    {
    	uint8_t i;
    	for (i = 0; i < Length; i++)							
    	{
    		OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0');
    	}
    }
    
    /**
      * @brief  OLED初始化
      * @param  无
      * @retval 无
      */
    void OLED_Init(void)
    {
    	uint32_t i, j;
    	
    	for (i = 0; i < 1000; i++)			//上电延时
    	{
    		for (j = 0; j < 1000; j++);
    	}
    	
    	OLED_I2C_Init();			//端口初始化
    	
    	OLED_WriteCommand(0xAE);	//关闭显示
    	
    	OLED_WriteCommand(0xD5);	//设置显示时钟分频比/振荡器频率
    	OLED_WriteCommand(0x80);
    	
    	OLED_WriteCommand(0xA8);	//设置多路复用率
    	OLED_WriteCommand(0x3F);
    	
    	OLED_WriteCommand(0xD3);	//设置显示偏移
    	OLED_WriteCommand(0x00);
    	
    	OLED_WriteCommand(0x40);	//设置显示开始行
    	
    	OLED_WriteCommand(0xA1);	//设置左右方向,0xA1正常 0xA0左右反置
    	
    	OLED_WriteCommand(0xC8);	//设置上下方向,0xC8正常 0xC0上下反置
    
    	OLED_WriteCommand(0xDA);	//设置COM引脚硬件配置
    	OLED_WriteCommand(0x12);
    	
    	OLED_WriteCommand(0x81);	//设置对比度控制
    	OLED_WriteCommand(0xCF);
    
    	OLED_WriteCommand(0xD9);	//设置预充电周期
    	OLED_WriteCommand(0xF1);
    
    	OLED_WriteCommand(0xDB);	//设置VCOMH取消选择级别
    	OLED_WriteCommand(0x30);
    
    	OLED_WriteCommand(0xA4);	//设置整个显示打开/关闭
    
    	OLED_WriteCommand(0xA6);	//设置正常/倒转显示
    
    	OLED_WriteCommand(0x8D);	//设置充电泵
    	OLED_WriteCommand(0x14);
    
    	OLED_WriteCommand(0xAF);	//开启显示
    		
    	OLED_Clear();				//OLED清屏
    }
    
    

    1.4 实验:旋转编码器计次

    需求:利用stm32的外部中断,对旋转编码器的转动进行计次,顺时针加、逆时针减,并显示在OLED显示屏上。
    上图是旋转编码器计次的接线图,下图是代码调用(除库函数以外)

    main.c

    #include "stm32f10x.h"                  // Device header
    #include "Delay.h"
    #include "OLED.h"
    #include "CountSensor.h"
    #include "Encoder.h"
    
    int16_t Num;			//定义待被旋转编码器调节的变量
    
    int main(void)
    {
    	/*模块初始化*/
    	OLED_Init();			//OLED初始化
    	CountSensor_Init();		//计数传感器初始化
    	Encoder_Init();            //旋转编码器初始化
    	
    	/*显示静态字符串*/
    	OLED_ShowString(1, 1, "Num:");	//1行1列显示字符串Count:
    	OLED_ShowString(2, 1, "Num+=:");	//1行1列显示字符串Count:
    	while (1)
    	{	
    		Num += Encoder_Get();
    		OLED_ShowSignedNum(1, 7, CountSensor_Get(), 5);		//OLED不断刷新显示CountSensor_Get的返回值
    		OLED_ShowSignedNum(2,8,Num,5);     //显示Num
    	}
    }
    
    

    Encoder.h

    #ifndef __ENCODER_H
    #define __ENCODER_H
    
    void Encoder_Init(void);
    int16_t Encoder_Get(void);
    
    #endif
    
    

    Encoder.c

    #include "stm32f10x.h"
    
    int16_t Encoder_Count;  //全局变量,用于计数旋转编码器的增量值
    
    void Encoder_Init(void)//旋转编码器初始化
    {
    	  /*开启时钟*/
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);		//开启AFIO的时钟,外部中断必须开启AFIO的时钟
    	
    	/*GPIO初始化*/
    	GPIO_InitTypeDef GPIO_InitStructure;
    	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;//AB相分别接的是PB0和PB1
    	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    	GPIO_Init(GPIOB, &GPIO_InitStructure);						//将PB0和PB1引脚初始化为上拉输入
    	
    	/*AFIO选择中断引脚*/
    	GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource0);//将外部中断的0号线映射到GPIOB,即选择PB0为外部中断引脚
    	GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource1);//将外部中断的1号线映射到GPIOB,即选择PB1为外部中断引脚
    	
    	/*EXTI初始化*/
    	EXTI_InitTypeDef EXTI_InitStructure;						//定义结构体变量
    	EXTI_InitStructure.EXTI_Line = EXTI_Line0 | EXTI_Line1;		//选择配置外部中断的0号线和1号线
    	EXTI_InitStructure.EXTI_LineCmd = ENABLE;					//指定外部中断线使能
    	EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;			//指定外部中断线为中断模式
    	EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;		//指定外部中断线为下降沿触发
    	EXTI_Init(&EXTI_InitStructure);								//将结构体变量交给EXTI_Init,配置EXTI外设
    	
    	/*NVIC中断分组*/
    	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2
    																//即抢占优先级范围:0~3,响应优先级范围:0~3
    																//此分组配置在整个工程中仅需调用一次
    																//若有多个中断,可以把此代码放在main函数内,while循环之前
    																//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置
    	
    	/*NVIC配置*/
    	NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量
    	NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;			//选择配置NVIC的EXTI0线
    	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能
    	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;	//指定NVIC线路的抢占优先级为1
    	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1
    	NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设
    
    	NVIC_InitStructure.NVIC_IRQChannel = EXTI1_IRQn;			//选择配置NVIC的EXTI1线
    	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能
    	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;	//指定NVIC线路的抢占优先级为1
    	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;			//指定NVIC线路的响应优先级为2
    	NVIC_Init(&NVIC_InitStructure);		
    
    }
    
    
    //打算每次调用get函数之后,返回count的变化值,用于外部加减一个变量
    int16_t Encoder_Get(void)
    {
    	//使用Temp变量作为中继,目的是返回Encoder_Count后将其清零,目的是给count清零
    	//在这里,也可以直接返回Encoder_Count,直接返回就退出函数了没办法给count清零
    	//下面这样子又能获取到count变化值,又能给count清零 
    	//直接返回count会导致你扭一下,count就有一个值,Num就会一直变化了
    	
    	int16_t Temp;
    	 Temp = Encoder_Count;
    	 Encoder_Count= 0;
    	return Temp;
    }
    
    void EXTI0_IRQHandler(void)//A口下降沿中断函数
    {
    	if(EXTI_GetITStatus(EXTI_Line0) == SET)
    	{
    		
    		if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1) == 0) //PB1的下降沿触发中断,此时检测另一相,等于1正转,等于0反转
    		{
    			Encoder_Count --;  //此方向定义为反转,计数变量自减
    		}
    		
    		EXTI_ClearITPendingBit(EXTI_Line0); //清除标志中断0号线的中断标志位
    	}
    
    }
    
    void EXTI1_IRQHandler(void)//B口下降沿中断函数
    {
    	if(EXTI_GetITStatus(EXTI_Line1) == SET)
    	{
    		if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1) == 0) //PB1的下降沿触发中断,此时检测另一相
    		{
    			Encoder_Count ++;  //此方向定义为正转,计数变量自增
    		}
    		
    		EXTI_ClearITPendingBit(EXTI_Line1); //清除标志中断1号线的中断标志位
    	}
    
    }
    
    1.41 编程感想
    1. 管理Hardware文件夹。本次实验继承的是“OLED显示屏”实验的代码,而非“对射式红外传感器计次”。
    2. 注意每个模块在使用的时候都要进行初始化。
    3. 注意进入中断函数的时候要检查中断标志位,,退出的时候清零中断标志位。
    4. 注意主函数和中断函数不要操控同一个硬件,避免不必要的硬件冲突。中断函数一般执行简短快速的代码,如操作中断标志位等。
    5. 在中断函数内部不要执行长时间函数,中断是快速的突发事件,必须要短。

    参考:B站STM32江协自动化&【哈工大虎慕】

    道友:没有永久的巅峰也没有永远的低谷,真正的强大不是忘记而是接受,接受世事无常、接受孤独挫败、接受突如其来的无力感、接受自己的不完美、接受困惑不安的焦虑和遗憾。

    物联沃分享整理
    物联沃-IOTWORD物联网 » 江科大嵌入式STM32教程:外部中断(EXTI)详解

    发表评论