使用深度学习、OpenCV和Python实现中国交通标志识别

文章目录

  • 0 前言
  • 1 yolov5实现中国交通标志检测
  • 2.算法原理
  • 2.1 算法简介
  • 2.2网络架构
  • 2.3 关键代码
  • 3 数据集处理
  • 3.1 VOC格式介绍
  • 3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式
  • 3.3 手动标注数据集
  • 4 模型训练
  • 5 实现效果
  • 5.1 视频效果
  • 6 最后
  • 0 前言

    🔥 优质竞赛项目系列,今天要分享的是

    🚩 基于深度学习的中国交通标志识别算法研究与实现

    该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

    🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分
  • 🧿 更多资料, 项目分享:

    https://gitee.com/dancheng-senior/postgraduate

    1 yolov5实现中国交通标志检测

    整个互联网基本没有国内交通标志识别的开源项目(都是国外的),今天学长分享一个中国版本的实时交通标志识别项目,非常适合作为竞赛项目~

    2.算法原理

    2.1 算法简介

    YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

    输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
    基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
    Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
    Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

    2.2网络架构

    上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。
  • 2.3 关键代码

    
    
        class Detect(nn.Module):
            stride = None  # strides computed during build
            onnx_dynamic = False  # ONNX export parameter
        
            def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
                super().__init__()
                self.nc = nc  # number of classes
                self.no = nc + 5  # number of outputs per anchor
                self.nl = len(anchors)  # number of detection layers
                self.na = len(anchors[0]) // 2  # number of anchors
                self.grid = [torch.zeros(1)] * self.nl  # init grid
                self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
                self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
                self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
                self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        
            def forward(self, x):
                z = []  # inference output
                for i in range(self.nl):
                    x[i] = self.m[i](x[i])  # conv
                    bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                    x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        
                    if not self.training:  # inference
                        if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                            self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
        
                        y = x[i].sigmoid()
                        if self.inplace:
                            y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                            y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                            xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                            wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                            y = torch.cat((xy, wh, y[..., 4:]), -1)
                        z.append(y.view(bs, -1, self.no))
        
                return x if self.training else (torch.cat(z, 1), x)
        
            def _make_grid(self, nx=20, ny=20, i=0):
                d = self.anchors[i].device
                if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                    yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
                else:
                    yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
                grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
                anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                    .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
                return grid, anchor_grid
    
    
        class Model(nn.Module):
            def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
                super().__init__()
                if isinstance(cfg, dict):
                    self.yaml = cfg  # model dict
                else:  # is *.yaml
                    import yaml  # for torch hub
                    self.yaml_file = Path(cfg).name
                    with open(cfg, encoding='ascii', errors='ignore') as f:
                        self.yaml = yaml.safe_load(f)  # model dict
        
                # Define model
                ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
                if nc and nc != self.yaml['nc']:
                    LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
                    self.yaml['nc'] = nc  # override yaml value
                if anchors:
                    LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
                    self.yaml['anchors'] = round(anchors)  # override yaml value
                self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
                self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
                self.inplace = self.yaml.get('inplace', True)
        
                # Build strides, anchors
                m = self.model[-1]  # Detect()
                if isinstance(m, Detect):
                    s = 256  # 2x min stride
                    m.inplace = self.inplace
                    m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
                    m.anchors /= m.stride.view(-1, 1, 1)
                    check_anchor_order(m)
                    self.stride = m.stride
                    self._initialize_biases()  # only run once
        
                # Init weights, biases
                initialize_weights(self)
                self.info()
                LOGGER.info('')
        
            def forward(self, x, augment=False, profile=False, visualize=False):
                if augment:
                    return self._forward_augment(x)  # augmented inference, None
                return self._forward_once(x, profile, visualize)  # single-scale inference, train
        
            def _forward_augment(self, x):
                img_size = x.shape[-2:]  # height, width
                s = [1, 0.83, 0.67]  # scales
                f = [None, 3, None]  # flips (2-ud, 3-lr)
                y = []  # outputs
                for si, fi in zip(s, f):
                    xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
                    yi = self._forward_once(xi)[0]  # forward
                    # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
                    yi = self._descale_pred(yi, fi, si, img_size)
                    y.append(yi)
                y = self._clip_augmented(y)  # clip augmented tails
                return torch.cat(y, 1), None  # augmented inference, train
        
            def _forward_once(self, x, profile=False, visualize=False):
                y, dt = [], []  # outputs
                for m in self.model:
                    if m.f != -1:  # if not from previous layer
                        x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
                    if profile:
                        self._profile_one_layer(m, x, dt)
                    x = m(x)  # run
                    y.append(x if m.i in self.save else None)  # save output
                    if visualize:
                        feature_visualization(x, m.type, m.i, save_dir=visualize)
                return x
        
            def _descale_pred(self, p, flips, scale, img_size):
                # de-scale predictions following augmented inference (inverse operation)
                if self.inplace:
                    p[..., :4] /= scale  # de-scale
                    if flips == 2:
                        p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
                    elif flips == 3:
                        p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
                else:
                    x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
                    if flips == 2:
                        y = img_size[0] - y  # de-flip ud
                    elif flips == 3:
                        x = img_size[1] - x  # de-flip lr
                    p = torch.cat((x, y, wh, p[..., 4:]), -1)
                return p
        
            def _clip_augmented(self, y):
                # Clip YOLOv5 augmented inference tails
                nl = self.model[-1].nl  # number of detection layers (P3-P5)
                g = sum(4 ** x for x in range(nl))  # grid points
                e = 1  # exclude layer count
                i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
                y[0] = y[0][:, :-i]  # large
                i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
                y[-1] = y[-1][:, i:]  # small
                return y
        
            def _profile_one_layer(self, m, x, dt):
                c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
                o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
                t = time_sync()
                for _ in range(10):
                    m(x.copy() if c else x)
                dt.append((time_sync() - t) * 100)
                if m == self.model[0]:
                    LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
                LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
                if c:
                    LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
        
            def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
                # https://arxiv.org/abs/1708.02002 section 3.3
                # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
                m = self.model[-1]  # Detect() module
                for mi, s in zip(m.m, m.stride):  # from
                    b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
                    b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
                    b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
                    mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
        
            def _print_biases(self):
                m = self.model[-1]  # Detect() module
                for mi in m.m:  # from
                    b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
                    LOGGER.info(
                        ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
        
            # def _print_weights(self):
            #     for m in self.model.modules():
            #         if type(m) is Bottleneck:
            #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights
        
            def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
                LOGGER.info('Fusing layers... ')
                for m in self.model.modules():
                    if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                        m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                        delattr(m, 'bn')  # remove batchnorm
                        m.forward = m.forward_fuse  # update forward
                self.info()
                return self
        
            def autoshape(self):  # add AutoShape module
                LOGGER.info('Adding AutoShape... ')
                m = AutoShape(self)  # wrap model
                copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributes
                return m
        
            def info(self, verbose=False, img_size=640):  # print model information
                model_info(self, verbose, img_size)
        
            def _apply(self, fn):
                # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
                self = super()._apply(fn)
                m = self.model[-1]  # Detect()
                if isinstance(m, Detect):
                    m.stride = fn(m.stride)
                    m.grid = list(map(fn, m.grid))
                    if isinstance(m.anchor_grid, list):
                        m.anchor_grid = list(map(fn, m.anchor_grid))
                return self
    
    
        def parse_model(d, ch):  # model_dict, input_channels(3)
            LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
            anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
            na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
            no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
        
            layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
            for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
                m = eval(m) if isinstance(m, str) else m  # eval strings
                for j, a in enumerate(args):
                    try:
                        args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                    except NameError:
                        pass
        
                n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
                if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                         BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
                    c1, c2 = ch[f], args[0]
                    if c2 != no:  # if not output
                        c2 = make_divisible(c2 * gw, 8)
        
                    args = [c1, c2, *args[1:]]
                    if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                        args.insert(2, n)  # number of repeats
                        n = 1
                elif m is nn.BatchNorm2d:
                    args = [ch[f]]
                elif m is Concat:
                    c2 = sum(ch[x] for x in f)
                elif m is Detect:
                    args.append([ch[x] for x in f])
                    if isinstance(args[1], int):  # number of anchors
                        args[1] = [list(range(args[1] * 2))] * len(f)
                elif m is Contract:
                    c2 = ch[f] * args[0] ** 2
                elif m is Expand:
                    c2 = ch[f] // args[0] ** 2
                else:
                    c2 = ch[f]
        
                m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
                t = str(m)[8:-2].replace('__main__.', '')  # module type
                np = sum(x.numel() for x in m_.parameters())  # number params
                m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
                LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
                save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
                layers.append(m_)
                if i == 0:
                    ch = []
                ch.append(c2)
            return nn.Sequential(*layers), sorted(save)
    
    
    

    3 数据集处理

    中国交通标志检测数据集CCTSDB,由长沙理工大学提供,包括上万张有标注的图片

    推荐只使用前4000张照片,因为后面有很多张图片没有标注,需要一张一张的删除,太过于麻烦,所以尽量用前4000张图

    3.1 VOC格式介绍

    VOC格式主要包含三个文件夹Annotations,ImageSets,JPEGImages,主要适用于faster-
    rcnn等模型的训练,ImageSets下面有一个Main的文件夹,如下图,一定按照这个名字和格式建好文件夹:

  • Annotations:这里是存放你对所有数据图片做的标注,每张照片的标注信息必须是xml格式。

  • JPEGImages:用来保存你的数据图片,一定要对图片进行编号,一般按照voc数据集格式,采用六位数字编码,如000001.jpg、000002.jpg等。

  • ImageSets:该文件下有一个main文件,main文件下有四个txt文件,分别是train.txt、test.txt、trainval.txt、val.txt,里面都是存放的图片号码。

  • 3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式

    将标注的数据提取出来并且排序,并将里面每一行分割成一个文件

    3.3 手动标注数据集

    如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

    以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,通过pip指令即可安装,相关教程可网上搜索


    pip install labelimg

    4 模型训练

    修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

    训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

    5 实现效果

    5.1 视频效果

    6 最后

    🧿 更多资料, 项目分享:

    https://gitee.com/dancheng-senior/postgraduate

    物联沃分享整理
    物联沃-IOTWORD物联网 » 使用深度学习、OpenCV和Python实现中国交通标志识别

    发表评论